平面內(nèi)與一個(gè)定點(diǎn)和一條直線的距離相等的點(diǎn)的軌跡叫做拋物線。下面是關(guān)于高中拋物線知識點(diǎn)總結(jié)的內(nèi)容,歡迎閱讀!
高中數(shù)學(xué)拋物線知識點(diǎn)總結(jié)(一)
拋物線方程
1 設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):
圖形 焦點(diǎn) 準(zhǔn)線 范圍 對稱軸軸軸頂點(diǎn) (0,0)離心率 焦點(diǎn)注:①頂點(diǎn)
.
、趧t焦點(diǎn)半徑
;則焦點(diǎn)半徑為
.
③通徑為2p,這是過焦點(diǎn)的所有弦中最短的.
、埽ɑ颍┑膮(shù)方程為
。ɑ
。閰(shù)).
高中數(shù)學(xué)拋物線知識點(diǎn)總結(jié)(二)
拋物線的性質(zhì)(見下表):
拋物線的焦點(diǎn)弦的性質(zhì):
關(guān)于拋物線的幾個(gè)重要結(jié)論:
(1)弦長公式同橢圓.
(2)對于拋物線y2=2px(p>0),我們有P(x0,y0)在拋物線內(nèi)部
P(x0,y0)在拋物線外部
(3)拋物線y2=2px上的點(diǎn)P(x1,y1)的切線方程是
拋物線y2=2px(p>0)的斜率為k的切線方程是y=kx+
(4)拋物線y2=2px外一點(diǎn)P(x0,y0)的切點(diǎn)弦方程是
(5)過拋物線y2=2px上兩點(diǎn)
的兩條切線交于點(diǎn)M(x0,y0),則
(6)自拋物線外一點(diǎn)P作兩條切線,切點(diǎn)為A,B,若焦點(diǎn)為F,
又若切線PA⊥PB,則AB必過拋物線焦點(diǎn)F.
利用拋物線的幾何性質(zhì)解題的方法:
根據(jù)拋物線定義得出拋物線一個(gè)非常重要的幾何性質(zhì):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離.利用拋物線的幾何性質(zhì),可以進(jìn)行求值、圖形的判斷及有關(guān)證明.
拋物線中定點(diǎn)問題的解決方法:
在高考中一般以填空題或選擇題的形式考查拋物線的定義、標(biāo)準(zhǔn)方程以及幾何性質(zhì)等基礎(chǔ)知識,在解答題中常常將解析幾何中的方法、技巧與思想集于一身,與其他圓錐曲線或其他章節(jié)的內(nèi)容相結(jié)合,考查綜合分析問題的能力,而與拋物線有關(guān)的定值及最值問題是一個(gè)很好的切人點(diǎn),充分利用點(diǎn)在拋物線上及拋物線方程的特點(diǎn)是解決此類題型的關(guān)鍵,在求最值時(shí)經(jīng)常運(yùn)用基本不等式、判別式以及轉(zhuǎn)化為函數(shù)最值等方法。
利用焦點(diǎn)弦求值:
利用拋物線及焦半徑的定義,結(jié)合焦點(diǎn)弦的表示,進(jìn)行有關(guān)的計(jì)算或求值。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。