在大多數(shù)學(xué)生眼里,數(shù)學(xué)是比較死板的,沒有靈活性,其實(shí)是你沒找到數(shù)學(xué)的美。今天小編給大家?guī)淼氖亲x數(shù)學(xué)之美讀后感:數(shù)學(xué)的藝術(shù),有興趣的小伙伴可以進(jìn)來一起閱讀!
這本書一共31章,主要介紹了這些數(shù)學(xué)方法:統(tǒng)計(jì)方法、統(tǒng)計(jì)語言模型、中文信息處理、隱含馬爾科夫模型、布爾代數(shù)、圖論、網(wǎng)頁排名技術(shù)、信息論、動(dòng)態(tài)規(guī)劃、余弦定理、矩陣運(yùn)算、信息指紋、密碼學(xué)、搜索技術(shù)、數(shù)學(xué)模型、最大熵模型、拼音輸入法、貝葉斯網(wǎng)絡(luò)、句法分析、維特比算法、各個(gè)擊破算法等。從第一章開始其明了幽默的語言就深深的吸引了我,讓我覺得如果早一點(diǎn)看這本書,也許數(shù)學(xué)之于我就是另一番天地。
第一章里作者從原始人類的通信方式開始入手,人類最早利用聲音進(jìn)行的通信依賴于開篇給出的"編碼-傳輸-解碼"的基本原理,指出原始人的通信方式和今天的通信方式?jīng)]什么不同,這世界上近現(xiàn)代最普遍的原理大部分都在人類發(fā)展的歷史上被無意識的使用著。
第六章信息論給出了信息的度量,它是基于概率的,概率越小,其不確定性越大,信息量就越大。引入信息量就可以消除系統(tǒng)的不確定性,同理自然語言處理的大量問題就是找相關(guān)的信息。信息熵的物理含義是對一個(gè)信息系統(tǒng)不確定性的度量,這一點(diǎn)與熱力學(xué)中的熵概念相同,看似不同的學(xué)科之間也會(huì)有著很強(qiáng)的相似性。事務(wù)之間是存在聯(lián)系的,要學(xué)會(huì)借鑒其他知識。
這本書里也能找到不少在學(xué)的課程知識,如大學(xué)專業(yè)課里,數(shù)電總是要比模電簡單不少,而自然界里大部分的信號都屬于模擬信號。所謂模擬信號,是指從時(shí)間和數(shù)值兩種維度上看來都是連續(xù)變化的信號。在實(shí)際電路中,模/數(shù)轉(zhuǎn)換是一個(gè)很重要的過程,將預(yù)處理的模擬信號經(jīng)過模/數(shù)變換為數(shù)字信號,然后進(jìn)行數(shù)字信號處理。而數(shù)字化處理有很多優(yōu)點(diǎn),比如功能強(qiáng)大、抗干擾能力強(qiáng)、易于傳輸?shù)取?/p>
簡而言之,如果沒有數(shù)學(xué),就沒有數(shù)字信號處理和傳輸?shù)母拍睿鴶?shù)字信號傳輸在當(dāng)下大規(guī)模的集成電路里是必不可少的,這是通信成功的基本要求。
作者把生活中遇到的復(fù)雜的問題,以簡單清晰,直觀的模型或者公式展現(xiàn)出來。我們可能過于注意生活中的種種奇妙現(xiàn)象,往往忽略了追求其理論邏輯的演繹,而這,也是大部分問題的主要根源。
羅素曾經(jīng)說過:"數(shù)學(xué),如果正確地看,不但擁有真理,而且也具有至高的美";愛因斯坦也曾說過:"純數(shù)學(xué)使我們能夠發(fā)現(xiàn)概念和聯(lián)系這些概念的規(guī)律,這些概念和規(guī)律給了我們理解自然現(xiàn)象的鑰匙。"數(shù)學(xué)在所有科學(xué)領(lǐng)域起著基礎(chǔ)和根本的作用。"哪里有數(shù),哪里就有美".在這里,我也想把《數(shù)學(xué)之美》真誠推薦給每一位對自然、科學(xué)、生活有興趣有熱情的朋友,不管你是從事職業(yè),讀一讀它,會(huì)讓你受益良多。
吳軍老師在《數(shù)學(xué)之美》中提到:"這本書的目的是講道而不是講術(shù)。很多具體的搜索技術(shù)很快會(huì)從獨(dú)門絕技到普及,再到落伍,追求術(shù)的人一輩子工作很辛苦。只有掌握了搜索的本質(zhì)和精髓才能永遠(yuǎn)游刃有余".回到我們?nèi)粘5纳钪校枰獙W(xué)習(xí)的東西、技術(shù)太多太多,如果一味地只為去追技術(shù)的腳步,那么我們也會(huì)很累很累。然而基本的原理卻是沒有怎么變化的。只見森林,不見樹木,難免迷失;站在高處向下看,也許我們一直看不到底,但是站在底處卻是可以看見底的。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時(shí)刪除。