ce,證明bd=ec+ed 解答:證明:∵∠bac=90°,ce⊥ae,bd⊥ae,∴∠abd+∠bad=90°,∠bad+∠dac=90°,∠adb=∠aec=90° ∴∠abd=∠" />

王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當前位置:公文素材庫 > 公文素材 > 范文素材 > 初二數(shù)學證明題(精選多篇)

初二數(shù)學證明題(精選多篇)

網(wǎng)站:公文素材庫 | 時間:2019-05-22 10:49:54 | 移動端:初二數(shù)學證明題(精選多篇)

第一篇:初二數(shù)學證明題

初二數(shù)學證明題

1、如圖,ab=ac,∠bac=90°,bd⊥ae于d,ce⊥ae于e.且bd>ce

,證明bd=ec+ed

.解答:證明:∵∠bac=90°,ce⊥ae,bd⊥ae,

∴∠abd+∠bad=90°,∠bad+∠dac=90°,∠adb=∠aec=90°.

∴∠abd=∠dac.

又∵ab=ac,

∴△abd≌△cae(aas).

∴bd=ae,ec=ad.

∵ae=ad+de,

∴bd=ec+ed.

2、△abc是等要直角三角形!蟖cb=90°,ad是bc邊上的中線,過c做ad的垂線,交ab于點e,交ad于點f,求證∠adc=∠bde

解:作ch⊥ab于h交ad于p,

∵在rt△abc中ac=cb,∠acb=90°,

∴∠cab=∠cba=45°.

∴∠hcb=90°-∠cba=45°=∠cba.

又∵中點d,

∴cd=bd.

又∵ch⊥ab,

∴ch=ah=bh.

又∵∠pah+∠aph=90°,∠pcf+∠cpf=90°,∠aph=∠cpf,

∴∠pah=∠pcf.

又∵∠aph=∠ceh,

在△aph與△ceh中

∠pah=∠ech,ah=ch,∠pha=∠ehc,

∴△aph≌△ceh(asa).

∴ph=eh,

又∵pc=ch-ph,be=bh-he,

∴cp=eb.

在△pdc與△edb中

pc=eb,∠pcd=∠ebd,dc=db,

∴△pdc≌△edb(sas).

∴∠adc=∠bde.

2

證明:作oe⊥ab于e,of⊥ac于f,

∵∠3=∠4,

∴oe=of.(問題在這里。理由是什么埃我有點不懂)

∵∠1=∠2,

∴ob=oc.

∴rt△obe≌rt△ocf(hl).

∴∠5=∠6.

∴∠1+∠5=∠2+∠6.

即∠abc=∠acb.

∴ab=ac.

∴△abc是等腰三角形

過點o作od⊥ab于d

過點o作oe⊥ac于e

再證rt△aod≌rt△aoe(aas)

得出od=oe

就可以再證rt△dob≌rt△eoc(hl)

得出∠abo=∠aco

再因為∠obc=∠ocb

得出∠abc=∠abc

得出等腰△abc

4

1.e是射線ab的一點,正方形abcd、正方形defg有公共頂點d,問當e在移動時,∠fbh的大小是一個定值嗎?并驗證

(過f作fm⊥ah于m,△ade全等于△mef證好了)

2.三角形abc,以ab、ac為邊作正方形abmn、正方形acpq

1)若de⊥bc,求證:e是nq的中點

2)若d是bc的中點,∠bac=90°,求證:ae⊥nq

3)若f是mp的中點,fg⊥bc于g,求證:2fg=bc

3.已知ad是bc邊上的高,be是∠abc的平分線,ef⊥bc于f,ad與be交于g

求證:1)ae=ag(這個證好了)2)四邊形aefg是菱形

第二篇:初二數(shù)學證明題測試

例1、如圖,ab∥cd,且∠abe=120°,∠cde=110°,求∠bed的度數(shù)。

例2、已知,∠fed=∠ahd,∠gfa=40°,∠haq=15°,∠acb=70°,且aq平分∠fac

求證:bd∥ge∥

ah

例3、如圖,已知b,e分別是線段ac,df上的點,af交bd于g,交ec于h,∠1=∠2,∠d=∠c。求證:∠a=∠

f

例4、如圖,ab∥cd,直線mn分別交ab,cd于e,f,eg平分∠bef,fg平分∠efd.

求證:eg⊥fg

例5、如圖,線段am∥dn,直線l與am,dn分別交于點b,c,直線l繞bc的中點p旋轉(點c由d點向n點方向移動)

(1)線段bc與ad,ab,cd圍成的圖形在初始狀態(tài)下,形狀是△abd(即△abc),請你寫出變化過程中其余的各種特殊四邊形的名稱。

(2)任取變化過程中的兩個圖形,測量ab,cd的長度后,分別計算每一個圖形中的ab+cd(精確到1厘米),比較這兩個和是否相等,試說明理由。

【模擬試題】(答題時間:30分鐘)

一、選擇題

1. 如圖1,ab∥cd,則下列結論成立的是() a. ∠a+∠c=180° b. ∠a+∠b=180°c. ∠b+∠c=180° d. ∠b+∠d=180°

(1)(2)(3)(4)

2. 若兩個角的一邊在同一條直線上,另一邊互相平行,那么這兩個角的關系是() a. 相等b. 互補c. 相等或互補d. 相等且互補

3. 如圖2,∠b=70°,∠dec=100°,∠edb=110°,則∠c等于() a. 70° b. 110°c. 80°d. 100° 4. 如圖3,下列推理正確的是()

a. ∵ma∥nb,∴∠1=∠3b. ∵∠2=∠4,∴mc∥nd c. ∵∠1=∠3,∴ma∥nbd. ∵mc∥nd,∴∠1=∠3 5. 如圖4,ab∥cd,∠a=25°,∠c=45°,則∠e的度數(shù)是() a. 60°b. 70°c. 80°d. 65°

二、填空題

1. 如圖5,已知ab∥cd,∠1=65°,∠2=45°,則∠adc

=________.

(5)(6)(7)(8)

2. 如圖6,已知∠1=∠2,∠bad=57°,則∠b=___(更多內(nèi)容請訪問首頁www.taixiivf.com,cf⊥mb,f是垂足,延長cf交ab于點e.求證:

?ame??

c

.

a

e

m

f

cb

5.如圖,直線y?kx?b與反比例函數(shù)y?

kx

"

(x<0)的圖象相交于點a、點b,與x軸交于

點c,其中點a的坐標為(-2,4),點b的橫坐標為-4.

(1)試確定反比例函數(shù)的關系式;(2)求△aoc的面積.

6.已知:如圖,點d是△abc的邊ac上的一點,過點d作de⊥ab,df⊥bc,e、f為垂足,再過點d作 dg∥ab,交bc于點g, 且de=df.

(1)求證:dg=bg; (2)求證:bd垂直平分ef.

d

g

f c

7.如圖,正方形oapb、adfe的頂點a、d、b在坐標軸上,點e在ap上,點p、f在函數(shù)y?的圖像上,已知正方形oapb的面積為9.

(1) 求k的值和直線op的解析式;(2)求正方形adfe的邊長.

8.如圖,△oab是邊長為2的等邊三角形,過點a的直線y??(1) 求點e的坐標; (2) 求 直線ae的解析式;

(3) 若點p(p,q)是線段ae上一動點(不與a、e重合),設△apb的面積為s,求:s關于p的函數(shù)關系式及定義域; (4) 若點p(p,q)是線段ae上一動點(不與a、e重合),且△apb是直角三角形,

求:點p的坐標。

33

kx

x?m與x軸交于點e。

第四篇:初二數(shù)學幾何證明題

1. 在△abc中,ab=ac,d在ab上,e在ac的延長線上,且bd=ce,線段de交bc于點f,說明:df=ef。

2.已知:在正方形abcd中,m是ab的中點,e是ab延長線上的一點,mn垂直dm于點m,且交∠cbe的平分線于點n.

(1)求證:md=mn.

(2)若將上述條件中的“m是ab的中點”改為“m是ab上任意一點”其余條件不變,則(1)的結論還成立嗎?如果成立,請證明,如果不成立,請說明理由。

3.。如圖,點e,f分別是菱形abcd的邊cd和cb延長線上的點,且de=bf,求證∠e=∠f。

4,如圖,在△abc中,d,e,f,分別為邊ab,bc,ca,的中點,求證四邊形decf為平行四邊形。

5.如圖,在菱形abcd中,∠dab=60度,過點c作ce垂直ac且與ab的延長線交與點e,求證四邊形aecd是等腰梯形?

6.如圖,已知平行四邊形abcd中,對角線ac,bd,相交與點0,e是bd延長線上的點,且三角形ace是等邊三角形。

1.求證四邊形abcd是菱形。

2.若∠aed=2∠ead,求證四邊形abcd是正方形。

7.已知正方形abcd中,角eaf=45度,f點在cd邊上,e點在bc邊上。求證:ef=be+df

第五篇:初二數(shù)學特殊平行四邊形壓軸:幾何證明題1

初二數(shù)學平行四邊形壓軸:幾何證明題

1.在四邊形abcd中,e、f、g、h分別是ab、bc、cd、da的中點,順次連接ef、fg、gh、he.

(1)請判斷四邊形efgh的形狀,并給予證明; (2)試探究當滿足什么條件時,使四邊形efgh是菱形,并說明理由。

2.如圖,在直角三角形abc中,∠acb=90°,ac=bc=10,將△abc繞點b沿順時針方向旋轉90°得到△a1bc1.

(1)線段a1c1的長度是,∠cba1的度數(shù)是.

(2)連接cc1,求證:四邊形cba1c1是平行四邊形.

c b

3. 如圖,矩形abcd中,點p是線段ad上一動點,o為bd的中點, po的延長線交bc于q.

(1)求證:op=oq;

(2)若ad=8厘米,ab=6厘米,p從點a出發(fā),以1厘米/秒的速度向d運動(不與d重合).設點p運動時間為t秒,請用t表示pd的長;并求t為何值時,四邊形pbqd是菱形.

4.已知:如圖,在□abcd中,ae是bc邊上的高,將△abe沿bc方向平移,使點e與點c重合,得△gfc.

⑴求證:be?dg;

⑵若∠b?60?,當ab與bc滿足什么數(shù)量關系時,四邊形abfg是菱形?證明你的結論.c f b a1 p e

5. 如圖,在四邊形abcd中,ad∥bc,e為cd的中點,連結ae、be,be⊥ae,延長ae交 bc的延長線于點f.

求證:(1)fc=ad;

(2)ab=bc+ad.

b f c d e

c

6.如圖,在△abc中,ab=ac,d是bc的中點,連結ad,在ad的延長線上取一點e,連結be,ce.

(1)求證:△abe≌△

ace

(2)當ae與ad滿足什么數(shù)量關系時,四邊形abec是菱形?并說明理由. b

a

7.如圖,在平行四邊形abcd中,點e是邊ad的中點,be的延長線與cd的延長線交于點f.

(1)求證:△abe≌△dfe

(2)連結bd、af,判斷四邊形abdf的形狀,并說明理由. ed

b c

8. 如圖,已知點d在△abc的bc邊上,de∥ac交ab于e,df∥ab交ac于f.

(1)求證:ae=df;

(2)若ad平分∠bac,試判斷四邊形aedf的形狀,并說明理由.

f

c b

d

9. 如圖,在平行四邊形中,點e,f是對角線bd上兩點,且bf?de.

(1)寫出圖中每一對你認為全等的三角形;

(2)選擇(1)中的任意一對全等三角形進行證明.

10.在梯形abcd中,ad∥bc,ab=dc,過點d作de⊥bc,垂足為點e,并延長de至點f,使ef=de.連接bf、cf、ac.

(1)求證:四邊形abfc是平行四邊形;

(2)若de?be?ce,求證:四邊形abfc是矩形.

2d b

11.如圖,△abc中,ab=ac,ad、ae分別是∠bac和∠bac的外角平分線,be⊥ae.

(1)求證:da⊥ae

(2)試判斷ab與de是否相等?并說明理由。

cb e

12.如圖,在△abc中,ab=ac,點d是bc上一動點(不與b、c重合),作de∥ac交ab于點e,df∥ab交ac于點f.

(1)當點d在bc上運動時,∠edf的大。ㄗ兇、變小、不變)

(2)當ab=10時,四邊形edf的周長是多少? a (3)點d在bc上移動的過程中,ab、de與df總存在什么數(shù)量關系?請說明.

e

bf c

來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。


初二數(shù)學證明題(精選多篇)》由互聯(lián)網(wǎng)用戶整理提供,轉載分享請保留原作者信息,謝謝!
鏈接地址:http://www.taixiivf.com/gongwen/381889.html