王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 二元函數(shù)極限證明

二元函數(shù)極限證明

網(wǎng)站:公文素材庫 | 時(shí)間:2019-05-22 10:58:52 | 移動(dòng)端:二元函數(shù)極限證明
第一篇:二元函數(shù)極限證明

二元函數(shù)極限證明

設(shè)p=f(x,y),p0=(a,b),當(dāng)p→p0時(shí)f(x,y)的極限是x,y同時(shí)趨向于a,b時(shí)所得到的稱為二重極限。

此外,我們還要討論x,y先后相繼地趨于a,b時(shí)的極限,稱為二次極限。

我們必須注意有以下幾種情形:’

(1)兩個(gè)二次極限都不存在而二重極限仍有可能存在

(2)兩個(gè)二次極限存在而不相等

(3)兩個(gè)二次極限存在且相等,但二重極限仍可能不存在

2

函數(shù)f(x)當(dāng)x→x0時(shí)極限存在,不妨設(shè):limf(x)=a(x→x0)

根據(jù)定義:對(duì)任意ε>0,存在δ>0,使當(dāng)|x-x0|<δ時(shí),有|f(x)-a|<ε

而|x-x0|<δ即為x屬于x0的某個(gè)鄰域u(x0;δ)

又因?yàn)棣庞腥我庑?故可取ε=1,則有:|f(x)-a|<ε=1,即:a-1

再取m=max{|a-1|,|a+1|},則有:存在δ>0,當(dāng)任意x屬于x0的某個(gè)鄰域u(x0;δ)時(shí),有|f(x)|

證畢

3首先,我的方法不正規(guī),其次,正確不正確有待考察。

1,y以y=x^2-x的路徑趨于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路徑趨于0結(jié)果是無窮大。

2,3可以用類似的方法,貌似同濟(jì)書上是這么說的,二元函數(shù)在該點(diǎn)極限存在,是p(x,y)以任何方式趨向于該點(diǎn)。

4

f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x)

顯然有y->0,f->(x^2/|x|)*sin(1/x)存在

當(dāng)x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0處是波動(dòng)的所以不存在

而當(dāng)x->0,y->0時(shí)

由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|)

而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2

所以|f|<=|x|+|y|

所以顯然當(dāng)x->0,y->0時(shí),f的極限就為0

這個(gè)就是你說的,唯一不一樣就是非正常極限是不存在而不是你說的

正無窮或負(fù)無窮或無窮,我想這個(gè)就可以了

就我這個(gè)我就線了好久了

5

(一)時(shí)函數(shù)的極限:

以時(shí)和為例引入.

介紹符號(hào):的意義,的直觀意義.

定義(和.)

幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.

例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……

(二)時(shí)函數(shù)的極限:

由考慮時(shí)的極限引入.

定義函數(shù)極限的“”定義.

幾何意義.

用定義驗(yàn)證函數(shù)極限的基本思路.

例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=

為使需有為使需有于是,倘限制,就有

例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:

1.定義:單側(cè)極限的定義及記法.

幾何意義:介紹半鄰域然后介紹等的幾何意義.

例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:

th類似有:例10證明:極限不存在.

例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有

= 2函數(shù)極限的性質(zhì)(3學(xué)時(shí))

教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。

教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號(hào)性、不等式性質(zhì)以及有理運(yùn)算性等。

教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。

教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。

教學(xué)方法:講練結(jié)合。

一、組織教學(xué):

我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.

二、講授新課:

(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.

1.唯一性:

2.局部有界性:

3.局部保號(hào)性:

4.單調(diào)性(不等式性質(zhì)):

th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對(duì)有)

註:若在th4的條件中,改“”為“”,未必就有以舉例說明.

5.迫斂性:

6.四則運(yùn)算性質(zhì):(只證“+”和“”)

(二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:

(注意前四個(gè)極限中極限就是函數(shù)值)

這些極限可作為公式用.在計(jì)算一些簡單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.

利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.

例1(利用極限和)

例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.

例4

例5例6例7

第二篇:二元函數(shù)的極限

2 二元函數(shù)的極限

(一) 教學(xué)目的:

掌握二元函數(shù)的極限的定義,了解重極限與累次極限的區(qū)別與聯(lián)系.

(二) 教學(xué)內(nèi)容:二元函數(shù)的極限的定義;累次極限.

基本要求:

(1)掌握二元函數(shù)的極限的定義,了解重極限與累次極限的區(qū)別與聯(lián)系,熟悉判別極限存在性的基本方法.

(2) 較高要求:掌握重極限與累次極限的區(qū)別與聯(lián)系,能用來處理極限存在性問題.

(三) 教學(xué)建議:

(1) 要求學(xué)生弄清一元函數(shù)極限與多元函數(shù)極限的聯(lián)系與區(qū)別,教會(huì)他們求多元函數(shù)極

限的方法.

(2) 對(duì)較好學(xué)生講清重極限與累次極限的區(qū)別與聯(lián)系,通過舉例介紹判別極限存在性的較完整的方法.

一二元函數(shù)的極限

先回憶一下一元函數(shù)的極限: limf(x)?a 的“???” 定義(c31):

x?x0

0設(shè)函數(shù)f(x)在x0的某一空心鄰域u(x0,?1)內(nèi)由定義,如果對(duì)

???0,當(dāng) x?u(x0,?),即 |x?x0|?? 時(shí),都有 |f(x)?a|??,???0,???1,

則稱x?x0時(shí),函數(shù)f(x)的極限是 a.

類似的,我們也可以定義二元函數(shù)的極限如下:

設(shè)二元函數(shù)f(x,y)為定義在d?r2上的二元函數(shù),在點(diǎn)p0(x0,y0)為d的一個(gè)聚點(diǎn),

a是一個(gè)確定的常數(shù),如果對(duì) ???0,???0,使得當(dāng) p(x,y)?u(p0,?)?d 時(shí),0都有 |f(p)?a|??,則稱f在d上當(dāng) p?p0時(shí),以a為極限。記作

p?p0p?dlimf(p)?a

也可簡寫為limf(p)?a或

p?p0(x,y)?(x0,y0)

2limf(x,y)?a 例1用定義驗(yàn)證

2lim(x,y)?(2,1)2(x?xy?y)?7 222證明:|x?xy?y?7|?|x?x?6?xy?x?y?1|

?|x?3||x?2|?|x?y?1||y?1|

限制在 (2,1)的鄰域 {(x,y)||x?2|?1,|y?1|?1}

|x?3|?6,

|x?y?1|?6

取 ??min{1,?/6},則有

|x?xy?y|??

由二元函數(shù)極限定義lim

(x,y)?(2,1)

(x?xy?y)?7

22

22

?x?y

,(x,y)?(0,0)?xy22

例2 f(x,y)??x?y,

?0,(x,y)?(0,0)?

證明lim

(x,y)?(0,0)

f(x,y)?0

x?yx?y

22

22

證|f(x,y)|?|xy

所以

lim

(x,y)?(0,0)

|?|xy|

lim

(x,y)?(0,0)

|f(x,y)|?lim

(x,y)?(0,0)

|xy|?0

|f(x,y)|?0

對(duì)于二元函數(shù)的極限的定義,要注意下面一點(diǎn):

p?p0

limf(p)?a 是指: p(x,y)以任何方式趨于p0(x0,y0),包括沿任何直線,沿任

何曲線趨于p0(x0,y0) 時(shí),f(x,y)必須趨于同一確定的常數(shù)。

對(duì)于一元函數(shù),x 僅需沿x軸從x0的左右兩個(gè)方向趨于x0,但是對(duì)于二元函數(shù),p趨于p0的路線有無窮多條,只要有兩條路線,p趨于p0時(shí),函數(shù)f(x,y)的值趨于不同的常數(shù),二元函數(shù)在p0點(diǎn)極限就不存在。

?1,0?y?x2

例1 二元函數(shù)f(x,y)??

?0,rest

請(qǐng)看圖像(x62),盡管p(x,y)沿任何直線趨于原點(diǎn)時(shí)f(x,y)都趨于零,但也不能說該函數(shù)在原點(diǎn)的極限就是零,因?yàn)楫?dāng)p(x,y)沿拋物線 y?kx,0?k?1時(shí), f(x,y)的值趨于1而不趨于零,所以極限不存在。

(考慮沿直線y?kx的方向極限 ).?x2y

,?

例2設(shè)函數(shù)f(x,y)??x2?y2

?0,?

(x.,y)?(0,0)(x,y)?(0,0)

求證limf(x,y)?0

x?0

y?0

證明因?yàn)閨f(x,y)?0|?

x|y|x?y

?

x|y|x

?|y|

所以, 當(dāng) (x,y)?(0,0)時(shí), f(x,y)?0。

請(qǐng)看它的圖像,不管p(x,y)沿任何方向趨于原點(diǎn),f(x,y)的值都趨于零。

通常為證明極限limf(p)不存在,可證明沿某個(gè)方向的極限不存在 , 或證明沿某兩

p?p0

個(gè)方向的極限不相等, 或證明方向極限與方向有關(guān) .

但應(yīng)注意 ,沿任何方向的極限存在且相等 ?? 全面極限存在. 例3

設(shè)函數(shù)

(x,y)?(0,0)(x,y)?(0,0)

?xy

,?22

f(x,y)??x?y

?0,?

證明函數(shù) f(x,y)在原點(diǎn)處極限不 存在。

證明盡管 p(x,y)沿 x軸和y軸

趨于原點(diǎn)時(shí) (f(x,y)的值都趨于零, 但沿直線y?mx 趨于原點(diǎn)時(shí)

x?mxx?(mx)

f(x,y)??

mx

22

(1?m)x

?

m1?m

沿斜率不同的直線趨于原點(diǎn)時(shí)極限不一樣,請(qǐng)看它的圖象, 例1沿任何路線趨于原點(diǎn)時(shí),

限都是0,但例2沿不同的路線趨于原點(diǎn)時(shí),函數(shù)趨于不同的值,所以其極限不存在。

例4

非正常極限極限

lim

(x,y)?(x0,y0)

判別函數(shù)f(x,y)?

xy?1?1x?y

在原點(diǎn)是否存在極限.

f(x,y)???的定義:

12x?3y

例1設(shè)函數(shù)f(x,y)?證明limf(x,y)??

x?0y?0

證|

12x?3y

|?|

13(x?y)

|

只要取??

16m

|x?0|??,|y?0|??時(shí),都有

|

12x?3y16?

22

|?|

13(x?y)

|

??m

12x?3y

請(qǐng)看它的圖象,因此是無窮大量。

例2求下列極限: i)

lim

xyx?y

22

;ii)

(x,y)?(0,0)(x,y)?(3,0)

lim

sinxyy

;

iii)

(x,y)?(0,0)

lim

xy?1?1xy

;iv)

(x,y)?(0,0)

lim

ln(1?x?y)

x?y

22

.

二.累次極限: 累次極限

前面講了p(x,y)以任何方式趨于p0(x0,y0)時(shí)的極限,我們稱它為二重極限,對(duì)于兩個(gè)自變量x,y依一定次序趨于x0,y0時(shí) f(x,y)的極限,稱為累次極限。 對(duì)于二元函數(shù)f(x,y)在p0(x0,y0)的累次極限由兩個(gè)

limlimf(x,y)和limlimf(x,y)

y?y0x?x0

x?x0y?y0

例1

f(x,y)?

xyx?yx?yx?y

222

, 求在點(diǎn)( 0 , 0 )的兩個(gè)累次極限.

22

例2 f(x,y)?, 求在點(diǎn)( 0 , 0 )的兩個(gè)累次極限 .

例3 f(x,y)?xs(請(qǐng)你支持:www.taixiivf.comlim

x?y?x?y

x?yx?y?x?y

x?y

y?0x?0

?lim

y?0

?lim(y?1)??1

y?0

?lim(x?1)?1

x?0

limlim

x?0y?0

?lim

x?0

(2) 兩個(gè)累次極限即使都存在而且相等,也不能保證二重極限存在 例f(x,y)?

xyx?y

xyx?y

, 兩個(gè)累次極限都存在

limlim

y?0x?0

?0,limlim

xyx?y

x?0y?0

?0

但二重極限卻不存在,事實(shí)上若點(diǎn)p(x,)沿直線 y?kx趨于原點(diǎn)時(shí),

kx

f(x,y)?

x?(kx)

?

k1?k

二重極限存在也不能保證累次極限存在

二重極限存在時(shí),兩個(gè)累次極限可以不存在.例函數(shù) f(x,y)?xsin

1y?ysin

1x

由|f(x,y)| ? |x|?|y|?0 ,( x ,y)?(0,0).可見二重極限存在 ,但

1x

limsin

x?0

和limsin

y?0

1y

不存在,從而兩個(gè)累次極限不存在。

(4)二重極限極限lim

(x,y)?(x0,y0)

f(x,y)和累次極限limlimf(x,y)(或另一次序)都存

x?x0y?y0

在 , 則必相等.( 證 )

(5)累次極限與二重極限的關(guān)系

若累次極限和二重極限都存在, 則它們必相等

第三篇:二元函數(shù)極限的研究

二元函數(shù)極限的研究

作者:鄭露遙指導(dǎo)教師:楊翠

摘要 函數(shù)的極限是高等數(shù)學(xué)重要的內(nèi)容,二元函數(shù)的極限是一元函數(shù)極限的基礎(chǔ)上發(fā)展起來的,本文討論了二元函數(shù)極限的定義、二元函數(shù)極限存在或不存在的判定方法、求二元函數(shù)極限的方法、簡單討論二元函數(shù)極限與一元函數(shù)極限的關(guān)系以及二元函數(shù)極限復(fù)雜的原因、最后討論二重極限與累次極限的關(guān)系。

關(guān)鍵詞 二元函數(shù)極限、累次極限、二重極限、連續(xù)性、判別法、洛必達(dá)法則、運(yùn)算定理

1 引言

函數(shù)的極限是高等數(shù)學(xué)中非常重要的內(nèi)容, 關(guān)于一元函數(shù)的極限及其求法, 各種教材中都有詳盡的說明。二元函數(shù)極限是在一元函數(shù)極限的基礎(chǔ)上發(fā)展起來的, 兩者之間既有聯(lián)系又有區(qū)別。例如, 在極運(yùn)算法則上, 它們是一致的, 但隨著變量個(gè)數(shù)的增加, 二元函數(shù)極限比一元函數(shù)極限變得復(fù)雜得多, 但目前的各類教材、教學(xué)參考書中有關(guān)二元函數(shù)極限的求法介紹不夠詳二元函數(shù)的極限是反映函數(shù)在某一領(lǐng)域內(nèi)的重要屬性的一個(gè)基本概念, 它刻劃了當(dāng)自變量趨向于某一個(gè)定值時(shí), 函數(shù)值的變化趨勢。是高等數(shù)學(xué)中一個(gè)極其重要的問題。但是, 一 般來說, 二元函數(shù)的極限比起一元函數(shù)的極限, 無論從計(jì)算還是證明都具有更大的難度。本文就二元函數(shù)極限的問題作如下探討求一元函數(shù)的極限問題, 主要困難多數(shù)集中于求未定型極限問題, 而所有未定型的極限又總可轉(zhuǎn)化為兩類基本型即00 與∞∞型,解決這兩類基本未定型的有力工具是洛泌達(dá)(lho sp ital) 法則。類似地, 二元函數(shù)基本未定型的極限問題也有相似的洛泌達(dá)法則。為了敘述上的方便, 對(duì)它的特殊情形(即(x0,y0) = (0, 0) ) 作出如下研究, 并得到相應(yīng)的法則與定理 。二元函數(shù)的極限是反映函數(shù)在某一領(lǐng)域內(nèi)的重要屬性的 一個(gè)基本概念, 它刻劃了當(dāng)自變量趨向于某一個(gè)定值時(shí), 函數(shù)

值的變化趨勢。是高等數(shù)學(xué)中一個(gè)極其重要的問題。但是, 一

般來說, 二元函數(shù)的極限比起一元函數(shù)的極限, 無論從計(jì)算還

是證明都具有更大的難度。本文就二元函數(shù)極限的問題作如

下探討。

第四篇:二元函數(shù)的極限與連續(xù)

2.3 二元函數(shù)的極限與連續(xù)

定義

設(shè)二元函數(shù)有意義, 若存在

常數(shù)a,

都有

則稱a是函數(shù)當(dāng)點(diǎn) 趨于點(diǎn)

趨于點(diǎn)時(shí)的極限,記作

。

的方式無關(guān),即不,當(dāng)(即)時(shí),在點(diǎn)的某鄰域內(nèi)或

必須注意這個(gè)極限值與點(diǎn)

論p以什么方

向和路徑(也可是跳躍式地,忽上忽下地)趨向

分接近, 就能 使。只要p與 充與a 接近到預(yù)先任意指定的程度。注意:點(diǎn)p趨于點(diǎn)點(diǎn)方式可有無窮多

種,比一元函數(shù)僅有左,右兩個(gè)單側(cè)極限要復(fù)雜的多(圖8-7)。

圖8-7

同樣我們可用歸結(jié)原則,若發(fā)現(xiàn)點(diǎn)p按兩個(gè)特殊的路徑趨于點(diǎn)時(shí),

極限

在該點(diǎn)

存在,但不相等, 則可以判定元函數(shù)極限不 存在的重要方法之一。

極限不存在。這是判斷多

一元函數(shù)極限中除了單調(diào)有界定理外,其余的有關(guān)性質(zhì)和結(jié)論, 在二元函數(shù)極

限理論中都適用,在這里就不一一贅述了。例如若

, 其中

。

求多元函數(shù)的極限, 一般都是轉(zhuǎn)化為一元函數(shù)的極限來求, 或利用夾逼定理

來計(jì)算。例4 求。解由于

,

,根據(jù)夾逼定理知

,所以 。

a≠0)

。

。例6 求。解

由于理知

且,所以根據(jù)夾逼定

.例7

研究函數(shù)

在點(diǎn)

處極限是否存在。解當(dāng)x2

+y2≠0時(shí),我們研究函數(shù),沿x→0,y=kx→0這一方式趨于

(0,0

)的極限,有值,可得到不同的極 限值,所以極限

不存在,但

,。很顯然,對(duì)于不同的k

注意:極限方式的

的區(qū)別, 前面兩個(gè)求

本質(zhì)是兩次求一元函數(shù)的極限, 我們稱為累次極限, 而最后一個(gè)是求二元函數(shù)的

極限,我們稱為求二重極限。

例8

設(shè)函數(shù)極限都不存在,因

為對(duì)任何

,當(dāng)

時(shí)

,

。它關(guān)于原點(diǎn)的兩個(gè)累次

的第二項(xiàng)不存在極限;同理對(duì)任何

時(shí), 的第 一項(xiàng)也不存在極限,

但是因此

。

由例7知, 兩次累次極限存在, 但二重極限不存在。由例8可知,二重極限存

在,但二個(gè)累次極限不存在。我們有下面的結(jié)果:定理1 若累次極限

都存在,則

三者相等(證明略)。推論

若但不相等,

則二重極限

存在

和二重極

,

由于

,

存在。定義 設(shè)

在點(diǎn)的某鄰域內(nèi)有意義,

且稱

數(shù)

,則

點(diǎn)

續(xù)

,

上式稱為函數(shù)(值)的全增

。

則。

定義

增量。

為函數(shù)(值)對(duì)x的偏

二元函數(shù)連續(xù)的定義可寫為

偏增量。

斷點(diǎn), 若

在點(diǎn)

為函數(shù)(值)對(duì)y的

處不連續(xù),

則稱點(diǎn)

的間

在某區(qū)域

在區(qū)域g上連續(xù)。若

在閉區(qū)域g

g上每一點(diǎn)都連續(xù),則稱的每一內(nèi)點(diǎn)都連 續(xù),并在g的連界點(diǎn)

處成立

,

則稱

為連續(xù)曲面。

在閉域g上連續(xù)。閉域上連續(xù)的二元函數(shù)的圖形稱

關(guān)于一元函數(shù)連續(xù)的有關(guān)性質(zhì), 如最值定理、介值定理、cantor

定理,對(duì)于

二元函數(shù)也相應(yīng)成立?梢宰C明如下的重要結(jié)果:定理2設(shè)

在平面有界閉區(qū)域g上連續(xù),則

(1)必在g上取到最大值,最小值及其中間的一切值;(2

,當(dāng)

時(shí),都有

。以上關(guān)于二元函數(shù)的

在g上一致連續(xù),即

極限和連續(xù)的有關(guān)性質(zhì)和結(jié)論在n元函數(shù)中仍然成立。

第五篇:函數(shù)極限的證明

函數(shù)極限的證明

(一)時(shí)函數(shù)的極限:

以時(shí)和為例引入.

介紹符號(hào):的意義,的直觀意義.

定義(和.)

幾何意義介紹鄰域其中為充分大的正數(shù).然后用這些鄰域語言介紹幾何意義.

例1驗(yàn)證例2驗(yàn)證例3驗(yàn)證證……

(二)時(shí)函數(shù)的極限:

由考慮時(shí)的極限引入.

定義函數(shù)極限的“”定義.

幾何意義.

用定義驗(yàn)證函數(shù)極限的基本思路.

例4驗(yàn)證例5驗(yàn)證例6驗(yàn)證證由=

為使需有為使需有于是,倘限制,就有

例7驗(yàn)證例8驗(yàn)證(類似有(三)單側(cè)極限:

1.定義:單側(cè)極限的定義及記法.

幾何意義:介紹半鄰域然后介紹等的幾何意義.

例9驗(yàn)證證考慮使的2.單側(cè)極限與雙側(cè)極限的關(guān)系:

th類似有:例10證明:極限不存在.

例11設(shè)函數(shù)在點(diǎn)的某鄰域內(nèi)單調(diào).若存在,則有

= 2函數(shù)極限的性質(zhì)(3學(xué)時(shí))

教學(xué)目的:使學(xué)生掌握函數(shù)極限的基本性質(zhì)。

教學(xué)要求:掌握函數(shù)極限的基本性質(zhì):唯一性、局部保號(hào)性、不等式性質(zhì)以及有理運(yùn)算性等。

教學(xué)重點(diǎn):函數(shù)極限的性質(zhì)及其計(jì)算。

教學(xué)難點(diǎn):函數(shù)極限性質(zhì)證明及其應(yīng)用。

教學(xué)方法:講練結(jié)合。

一、組織教學(xué):

我們引進(jìn)了六種極限:,.以下以極限為例討論性質(zhì).均給出證明或簡證.

二、講授新課:

(一)函數(shù)極限的性質(zhì):以下性質(zhì)均以定理形式給出.

1.唯一性:

2.局部有界性:

3.局部保號(hào)性:

4.單調(diào)性(不等式性質(zhì)):

th4若和都存在,且存在點(diǎn)的空心鄰域,使,都有證設(shè)=(現(xiàn)證對(duì)有)

註:若在th4的條件中,改“”為“”,未必就有以舉例說明.

5.迫斂性:

6.四則運(yùn)算性質(zhì):(只證“+”和“”)

(二)利用極限性質(zhì)求極限:已證明過以下幾個(gè)極限:

(注意前四個(gè)極限中極限就是函數(shù)值)

這些極限可作為公式用.在計(jì)算一些簡單極限時(shí),有五組基本極限作為公式用,我們將陸續(xù)證明這些公式.

利用極限性質(zhì),特別是運(yùn)算性質(zhì)求極限的原理是:通過有關(guān)性質(zhì),把所求極限化為基本極限,代入基本極限的值,即計(jì)算得所求極限.

例1(利用極限和)

例2例3註:關(guān)于的有理分式當(dāng)時(shí)的極限.

例4

例5例6例7

公文素材庫推薦更多文章:

函數(shù)極限證明

函數(shù)極限的性質(zhì)證明

函數(shù)極限的定義證明

利用函數(shù)極限定義證明11

用定義證明函數(shù)極限方法總結(jié)

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請(qǐng)聯(lián)系我們及時(shí)刪除。


二元函數(shù)極限證明》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請(qǐng)保留原作者信息,謝謝!
鏈接地址:http://www.taixiivf.com/gongwen/382433.html
相關(guān)文章