初一下冊數(shù)學(xué)知識點(diǎn)總結(jié)
初一下冊數(shù)學(xué)知識點(diǎn)總結(jié)過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等
5過一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60°的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等
40逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關(guān)于中心對稱的兩個圖形是全等的
72定理2關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2S=L×h83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:dwc/S-?
84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似
96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比97性質(zhì)定理2相似三角形周長的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個外角都等于它的內(nèi)對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r?
122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
134如果兩個圓相切,那么切點(diǎn)一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公*弦137定理把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓139正n邊形的每個內(nèi)角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長
143如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長撲愎劍=n兀R/180
145扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)(還有一些,大家?guī)脱a(bǔ)充吧)實(shí)用工具:常用數(shù)學(xué)公式公式分類公式表達(dá)式乘法與因式分解a^2-b^2=(a+b)(a-b)
a^3+b^3=(a+b)(a^2-ab+b^2)a^3-b^3=(a-b(a^2+ab+b^2)
三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解-b+√(b^2-4ac)/2a-b-√(b^2-4ac)/2a根與系數(shù)的關(guān)系X1+X2=-b/aX1*X2=c/a注:韋達(dá)定理判別式
b^2-4ac=0注:方程有兩個相等的實(shí)根b^2-4ac>0注:方程有兩個不等的實(shí)根b^2-4ac1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2-2+4+6+8+10+12+14+…+(2n)=n(n+1)5
1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/4
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圓半徑余弦定理b^2=a^2+c^2-2accosB注:角B是邊a和邊c的夾角圓的標(biāo)準(zhǔn)方程(x-a)^2+(y-b)^2=^r2注:(a,b)是圓心坐標(biāo)圓的一般方程x^2+y^2+Dx+Ey+F=0注:D^2+E^2-4F>0拋物線標(biāo)準(zhǔn)方程y^2=2pxy^2=-2pxx^2=2pyx^2=-2py直棱柱側(cè)面積S=c*h斜棱柱側(cè)面積S=c"*h
正棱錐側(cè)面積S=1/2c*h"正棱臺側(cè)面積S=1/2(c+c")h"圓臺側(cè)面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側(cè)面積S=c*h=2pi*h圓錐側(cè)面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數(shù)r>0扇形面積公式s=1/2*l*r錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜棱柱體積V=S"L注:其中,S"是直截面面積,L是側(cè)棱長柱體體積公式V=s*h圓柱體V=pi*r2h
擴(kuò)展閱讀:初一下冊數(shù)學(xué)知識點(diǎn)匯總
第一章整式的運(yùn)算知識點(diǎn)匯總
一、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
1、單項(xiàng)式
a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個數(shù)或字母也是單項(xiàng)式。b)單項(xiàng)式的系數(shù)是這個單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前
面的性質(zhì)符號,如果一個單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。c)一個單項(xiàng)式中,所有字母的指數(shù)和叫做這個單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單
項(xiàng)式次數(shù)為0)
2、多項(xiàng)式
a)幾個單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,
不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù).
b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)
式的每一項(xiàng)都是單項(xiàng)式,一個多項(xiàng)式的項(xiàng)數(shù)就是這個多項(xiàng)式作為加數(shù)的單項(xiàng)式的個數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項(xiàng)式的次數(shù),一個多項(xiàng)式的次數(shù)只有一個,它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).
二、整式的加減
a)整式的加減實(shí)質(zhì)上就是去括號后,合并同類項(xiàng),運(yùn)算結(jié)果是一個多項(xiàng)式或是單項(xiàng)式.
b)括號前面是“-”號,去括號時,括號內(nèi)各項(xiàng)要變號,一個數(shù)與多項(xiàng)式相乘時,
這個數(shù)與括號內(nèi)各項(xiàng)都要相乘。
三、同底數(shù)冪的乘法
1、同底數(shù)冪的乘法法則:
amanamn(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要
注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體
的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;b)指數(shù)是1時,不要誤以為沒有指數(shù);c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可
以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;d)當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為amanapamnp(其中m、
n、p均為整數(shù));
e)公式還可以逆用:amnaman(m、n均為整數(shù))
四、冪的乘方與積的乘方
a)冪的乘方法則:(am)namn(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來
的,但兩者不能混淆。
b)(am)n(an)mamn(m,n都為整數(shù))。
c)底數(shù)有負(fù)號時,運(yùn)算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法
則化成同底,如將(-a)3化成-a3
an(當(dāng)n為偶數(shù)時),一般地,(a)na(當(dāng)n為奇數(shù)時).nd)底數(shù)有時形式不同,但可以化成相同。
e)要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、
b均不為零)。
f)積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,
即(ab)nanbn(n為正整數(shù))。g)冪的乘方與積乘方法則均可逆向運(yùn)用。
五、同底數(shù)冪的除法
a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即amanamn(a≠0).
b)在應(yīng)用時需要注意以下幾點(diǎn):
1)法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則
中a≠0。
2)任何不等于0的數(shù)的0次冪等于1,即a01(a0),如1001,(-2.50=1),
則00無意義。
c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即
1app(a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一
a11(2)3定是正的,當(dāng)a六、整式的乘法
1、單項(xiàng)式乘法法則:
單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項(xiàng)式乘法法則在運(yùn)用時要注意以下幾點(diǎn):
a)積的系數(shù)等于各因式系數(shù)積,先確定符號,再計(jì)算絕對值。這時容易出現(xiàn)的錯
誤的是,將系數(shù)相乘與指數(shù)相加混淆;b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;
c)只在一個單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個因式;d)單項(xiàng)式乘法法則對于三個以上的單項(xiàng)式相乘同樣適用;e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個單項(xiàng)式。2、單項(xiàng)式與多項(xiàng)式相乘法則:
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。
單項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):
a)單項(xiàng)式與多項(xiàng)式相乘,積是一個多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;b)運(yùn)算時要注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號;c)在混合運(yùn)算時,要注意運(yùn)算順序。3、多項(xiàng)式與多項(xiàng)式相乘法則
多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式中的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):
a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積
的項(xiàng)數(shù)應(yīng)等于原兩個多項(xiàng)式項(xiàng)數(shù)的積;b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
c)對含有同一個字母的一次項(xiàng)系數(shù)是1的兩個一次二項(xiàng)式相乘
(xa)(xb)x2(ab)xab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個因式中常數(shù)項(xiàng)的積。對于一次項(xiàng)系數(shù)不為1的兩個一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得到
(mxa)(nxb)mnx2(mbna)xab
七.平方差公式
1、平方差公式:
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即(ab)(ab)a2b2。
其結(jié)構(gòu)特征是:
a)公式左邊是兩個二項(xiàng)式相乘,兩個二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);b)公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
八、完全平方公式
1、完全平方公式:
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即
(ab)2a22abb2;
口訣:首平方,尾平方,2倍乘積在中央;2、結(jié)構(gòu)特征:
a)公式左邊是二項(xiàng)式的完全平方;
b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2
倍。
c)在運(yùn)用完全平方公式時,要注意公式右邊中間項(xiàng)的符號,以及避免出現(xiàn)
(ab)2a2b2這樣的錯誤。
九、整式的除法
1、單項(xiàng)式除法單項(xiàng)式
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;2、多項(xiàng)式除以單項(xiàng)式
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。
第二章平行線與相交線知識點(diǎn)匯總
一、臺球桌面上的角
1、互為余角和互為補(bǔ)角的有關(guān)概念與性質(zhì)
a)如果兩個角的和為90°(或直角),那么這兩個角互為余角;b)如果兩個角的和為180°(或平角),那么這兩個角互為補(bǔ)角;
注意:這兩個概念都是對于兩個角而言的,而且兩個概念強(qiáng)調(diào)的是兩個角的數(shù)量關(guān)系,與兩個角的相互位置沒有關(guān)系。
c)它們的主要性質(zhì):同角或等角的余角相等;d)同角或等角的補(bǔ)角相等。
二、探索直線平行的條件
1、兩條直線互相平行的條件即兩條直線互相平行的判定定理共有三條:
a)同位角相等,兩直線平行;b)內(nèi)錯角相等,兩直線平行;c)同旁內(nèi)角互補(bǔ),兩直線平行。
三、平行線的特征
1、平行線的特征即平行線的性質(zhì)定理,共有三條:
a)兩直線平行,同位角相等;b)兩直線平行,內(nèi)錯角相等;c)兩直線平行,同旁內(nèi)角互補(bǔ)。
四、用尺規(guī)作線段和角
1、關(guān)于尺規(guī)作圖
尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。2、關(guān)于尺規(guī)的功能
a)直尺的功能是:在兩點(diǎn)間連接一條線段;將線段向兩方向延長。
b)圓規(guī)的功能是:以任意一點(diǎn)為圓心,任意長度為半徑作一個圓;以任意一點(diǎn)為
圓心,任意長度為半徑畫一段弧。
第三章生活中的數(shù)據(jù)知識點(diǎn)
一、科學(xué)記數(shù)法:
對任意一個正數(shù)可能寫成a×10n的形式,其中1≤a<10,n是整數(shù),這種記數(shù)的方法稱為科學(xué)記數(shù)法。
二、近似數(shù)和有效數(shù)字:
1、近似數(shù)
利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位;2、有效數(shù)字
對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個數(shù)的有效數(shù)字。3、統(tǒng)計(jì)工作包括:
a)b)c)d)e)
設(shè)定目標(biāo);收集數(shù)據(jù);整理數(shù)據(jù);
表達(dá)與描述數(shù)據(jù);分析結(jié)果。第四章概率知識點(diǎn)
1、隨機(jī)事件發(fā)生與不發(fā)生的可能性不總是各占一半,都為50%。
2、現(xiàn)實(shí)生活中存在著大量的不確定事件,而概率正是研究不確定事件的一門學(xué)科。3、了解必然事件和不可能事件發(fā)生的概率。
必然事件發(fā)生的概率為1,即P(必然事件)=1;不可能事件發(fā)生的概率為0,即P(不可能事件)=0;如果A為不確定事件,那么0
友情提示:本文中關(guān)于《初一下冊數(shù)學(xué)知識點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,初一下冊數(shù)學(xué)知識點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。