高中數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)
高中數(shù)學(xué)必修2知識(shí)點(diǎn)
一、直線與方程(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。當(dāng)0,90時(shí),k0;當(dāng)90,180時(shí),k0;當(dāng)90時(shí),k不存在。
②過(guò)兩點(diǎn)的直線的斜率公式:k注意下面四點(diǎn):(1)當(dāng)x1y2y1(x1x2)
x2x1x2時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線方程①點(diǎn)斜式:
yy1k(xx1)直線斜率k,且過(guò)點(diǎn)x1,y1
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它
的方程是x=x1。②斜截式:③兩點(diǎn)式:
ykxb,直線斜率為k,直線在y軸上的截距為b
yy1xx1(x1x2,y1y2)直線兩點(diǎn)x1,y1,x2,y2
y2y1x2x1④截矩式:
xy1ab其中直線l與x軸交于點(diǎn)(a,0),與y軸交于點(diǎn)(0,b),即l與x軸、y軸的截距分別為a,b。
AxByC0(A,B不全為0)
注意:○1各式的適用范圍○2特殊的方程如:
⑤一般式:
平行于x軸的直線:
yb(b為常數(shù));平行于y軸的直線:xa(a為常數(shù));
A0xB0yC00(A0,B0是不全為0的常數(shù))的直線系:A0xB0yC0(C為常數(shù))
(5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系
平行于已知直線(二)過(guò)定點(diǎn)的直線系()斜率為k的直線系:()過(guò)兩條直線l1yy0kxx0,直線過(guò)定點(diǎn)x0,y0;
:A1xB1yC10,l2:A2xB2yC20的交點(diǎn)的直線系方程為
,其中直線l2不在直線系中。A1xB1yC1A2xB2yC20(為參數(shù))(6)兩直線平行與垂直當(dāng)l1:yk1xb1,l2:yk2xb2時(shí),
l1//l2k1k2,b1b2;l1l2k1k21
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。(7)兩條直線的交點(diǎn)
l1:A1xB1yC10l2:A2xB2yC20相交
交點(diǎn)坐標(biāo)即方程組A1xB1yC10的一組解。A2xB2yC20方程組無(wú)解l1//l2;方程組有無(wú)數(shù)解l1與l2重合
Bx2,y2)(8)兩點(diǎn)間距離公式:設(shè)A(x1,y1),(是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),
則|AB|(x2x1)2(y2y1)(9)點(diǎn)到直線距離公式:一點(diǎn)Px0,y0到直線l1:AxByC0的距離dAx0By0C
A2B2(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。二、圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。2、圓的方程(1)標(biāo)準(zhǔn)方程
xa2yb2r2,圓心a,b,半徑為r;
2(2)一般方程x當(dāng)D2y2DxEyF0
22DE,半徑為r1E24F0時(shí),方程表示圓,此時(shí)圓心為,2222D2E24F
當(dāng)DE4F0時(shí),表示一個(gè)點(diǎn);當(dāng)DE4F0時(shí),方程不表示任何圖形。(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:(1)設(shè)直線l2:AxByC0,圓C:xa2yb2r2,圓心Ca,b到l的距離為dAaBbCA2B222,則有
drl與C相離;drl與C相切;drl與C相交
(2)設(shè)直線l:AxByC0,圓C:xaybr2,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令
其中的判別式為,則有
0l與C相離;0l與C相切;0l與C相交
注:如果圓心的位置在原點(diǎn),可使用公式xx0半徑。
(3)過(guò)圓上一點(diǎn)的切線方程:
①圓x2+y2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為xx0yy0r2去解直線與圓相切的問(wèn)題,其中x0,y0表示切點(diǎn)坐標(biāo),r表示
yy0r2(課本命題).
2②圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2(課本命題的推廣).4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設(shè)圓C1:xa1yb1r2,C222:xa2yb2R2
2兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當(dāng)dRr時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)dRr時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;
當(dāng)RrdRr時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當(dāng)dRr時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;當(dāng)dRr時(shí),兩圓內(nèi)含;當(dāng)d0時(shí),為同心圓。
三、立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的
幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。表示:用各頂點(diǎn)字母,如五棱柱
ABCDEA"B"C"D"E"或用對(duì)角線的端點(diǎn)字母,如五棱柱AD"幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面
全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐PABCDE
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。(3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
表示:用各頂點(diǎn)字母,如五棱臺(tái)PABCDE
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。(6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
""""""""""3、空間幾何體的直觀圖斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h為斜高,l為母線)
"S直棱柱側(cè)面積chS圓柱側(cè)2rhS正棱錐側(cè)面積1ch"S圓錐側(cè)面積rl
2S正棱臺(tái)側(cè)面積S圓柱表2rrlS圓錐表rrlS圓臺(tái)表r2rlRlR2
(3)柱體、錐體、臺(tái)體的體積公式
1(c1c2)h"S圓臺(tái)側(cè)面積(rR)l2V柱ShV圓柱Shr2hV錐1ShV圓錐1r2h
33(4)球體的表面積和體積公式:V球=R3;S球面=4R34、空間點(diǎn)、直線、平面的位置關(guān)系(1)平面
1"11"""V(SSSS)h(r2rRR)2hV臺(tái)(SSSS)h圓臺(tái)3332①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;
②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個(gè)銳角內(nèi));
也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。③點(diǎn)與平面的關(guān)系:點(diǎn)A在平面內(nèi),記作
A;點(diǎn)A不在平面內(nèi),記作A
點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:A∈l;點(diǎn)A在直線l外,記作Al;直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα。
(2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)應(yīng)用:檢驗(yàn)桌面是否平;判斷直線是否在平面內(nèi)用符號(hào)語(yǔ)言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)
(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線符號(hào):平面α和β相交,交線是a,記作α∩β=a。符號(hào)語(yǔ)言:PABABl,Pl
公理3的作用:①它是判定兩個(gè)平面相交的方法。②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關(guān)系
①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線②異面直線性質(zhì):既不平行,又不相交。
③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線
④異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。說(shuō)明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理(2)在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。②求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作
出的角即為所求角C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn).
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa∥α
(9)平面與平面之間的位置關(guān)系:平行沒有公共點(diǎn);α∥β
相交有一條公共直線。α∩β=b
5、空間中的平行問(wèn)題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理
(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行→面面平行),(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行),(3)垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問(wèn)題
(1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。9、空間角問(wèn)題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為0。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為0。②平面的垂線與平面所成的角:規(guī)定為90。
③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線a,b,形成兩條相交直線,這兩
③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,
在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。(3)二面角和二面角的平面角
①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。
②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角.....的平面角。
③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角
④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角
垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角7、空間直角坐標(biāo)系
(1)定義:如圖,OBCDDA,B,C,是單位正方體.以A為原點(diǎn),
,分別以O(shè)D,OA,OB的方向?yàn)檎较�,建立三條數(shù)軸x軸.y軸.z軸。
這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.
,1)O叫做坐標(biāo)原點(diǎn)2)x軸,y軸,z軸叫做坐標(biāo)軸.3)過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。
(2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來(lái)表示,有序?qū)崝?shù)組(x,y,z)叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))(4)空間兩點(diǎn)距離坐標(biāo)公式:d
(x2x1)2(y2y1)2(z2z1)
擴(kuò)展閱讀:高一數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)
高中數(shù)學(xué)必修2知識(shí)點(diǎn)
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即ktan。斜率反映直線與軸的傾斜程度。
當(dāng)0,90時(shí),k0;當(dāng)90,180時(shí),k0;當(dāng)90時(shí),k不存在。
yy1(x1x2)②過(guò)兩點(diǎn)的直線的斜率公式:k2x2x1注意下面四點(diǎn):(1)當(dāng)x1x2時(shí),公式右邊無(wú)意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無(wú)關(guān);(3)以后求斜率可不通過(guò)傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。(3)直線方程
①點(diǎn)斜式:yy1k(xx1)直線斜率k,且過(guò)點(diǎn)x1,y1
注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。
當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。
②斜截式:ykxb,直線斜率為k,直線在y軸上的截距為b③兩點(diǎn)式:④截矩式:
yy1y2y1xayxx1x2x1(x1x2,y1y2)直線兩點(diǎn)x1,y1,x2,y2
1b其中直線l與x軸交于點(diǎn)(a,0),與y軸交于點(diǎn)(0,b),即l與x軸、y軸的截距分別為a,b。
⑤一般式:AxByC0(A,B不全為0)
1各式的適用范圍○2特殊的方程如:注意:○
平行于x軸的直線:yb(b為常數(shù));平行于y軸的直線:xa(a為常數(shù));(5)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系
平行于已知直線A0xB0yC00(A0,B0是不全為0的常數(shù))的直線系:
A0xB0yC0(C為常數(shù))
(二)過(guò)定點(diǎn)的直線系
()斜率為k的直線系:yy0kxx0,直線過(guò)定點(diǎn)x0,y0;
()過(guò)兩條直線l1:A1xB1yC10,l2:A2xB2yC20的交點(diǎn)的直線系方程為
,其中直線l2不在直線系中。A1xB1yC1A2xB2yC20(為參數(shù))(6)兩直線平行與垂直
第1頁(yè)
當(dāng)l1:yk1xb1,l2:yk2xb2時(shí),l1//l2k1k2,b1b2;l1l2k1k21
注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。(7)兩條直線的交點(diǎn)
l1:A1xB1yC10l2:A2xB2yC20相交交點(diǎn)坐標(biāo)即方程組A1xB1yC10的一組解。
A2xB2yC20方程組無(wú)解l1//l2;方程組有無(wú)數(shù)解l1與l2重合(8)兩點(diǎn)間距離公式:設(shè)A(x1,y1),B是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),(x2,y2)則|AB|(x2x1)2(y2y1)2
(9)點(diǎn)到直線距離公式:一點(diǎn)Px0,y0到直線l1:AxByC0的距離d(10)兩平行直線距離公式
在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。
Ax0By0CAB22
二、圓的方程
1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的
半徑。
2、圓的方程
(1)標(biāo)準(zhǔn)方程xaybr2,圓心a,b,半徑為r;
22(2)一般方程x2y2DxEyF0當(dāng)DE2224F0時(shí),方程表示圓,此時(shí)圓心為22D2,1E,半徑為r22D2E24F
當(dāng)DE4F0時(shí),表示一個(gè)點(diǎn);當(dāng)DE4F0時(shí),方程不表示任何圖
形。
(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:
(1)設(shè)直線l:AxByC0,圓C:xa2yb2r2,圓心Ca,b到l的距離為
dAaBbCAB222,則有drl與C相離;drl與C相切;drl與C相交
22(2)設(shè)直線l:AxByC0,圓C:xaybr2,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為,則有
0l與C相離;0l與C相切;0l與C相交
2注:如果圓心的位置在原點(diǎn),可使用公式xx0yy0r去解直線與圓相切的問(wèn)題,其中x0,y0表示切點(diǎn)坐標(biāo),r表示半徑。
(3)過(guò)圓上一點(diǎn)的切線方程:
22①圓x2+y2=r,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為xx0yy0r(課本命題).
2222
②圓(x-a)+(y-b)=r,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r(課本命題的推廣).
第2頁(yè)
4、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。設(shè)圓C1:xa12yb12r2,C2:xa22yb22R2兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當(dāng)dRr時(shí)兩圓外離,此時(shí)有公切線四條;
當(dāng)dRr時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)RrdRr時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)dRr時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;當(dāng)dRr時(shí),兩圓內(nèi)含;當(dāng)d0時(shí),為同心圓。
三、立體幾何初步
1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征
(1)棱柱:定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共
邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱ABCDEA"B"C"D"E"或用對(duì)角線的端點(diǎn)字母,如五棱柱
"AD
幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且
相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐PABCDE
幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到
截面距離與高的比的平方。
(3)棱臺(tái):定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等
"""""表示:用各頂點(diǎn)字母,如五棱臺(tái)PABCDE
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)(4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖
是一個(gè)矩形。
(5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何
體"""""第3頁(yè)
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。(6)圓臺(tái):定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。(7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長(zhǎng)度;俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長(zhǎng)度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖斜二測(cè)畫法
斜二測(cè)畫法特點(diǎn):①原來(lái)與x軸平行的線段仍然與x平行且長(zhǎng)度不變;
②原來(lái)與y軸平行的線段仍然與y平行,長(zhǎng)度為原來(lái)的一半。
4、柱體、錐體、臺(tái)體的表面積與體積
(1)幾何體的表面積為幾何體各個(gè)面的面積的和。
(2)特殊幾何體表面積公式(c為底面周長(zhǎng),h為高,h為斜高,l為母線)
"S直棱柱側(cè)面積S正棱臺(tái)側(cè)面積12chS圓柱側(cè)2rhS正棱錐側(cè)面積(c1c2)h"S圓臺(tái)側(cè)面積(rR)l
12ch"S圓錐側(cè)面積rl
S圓柱表2rrlS圓錐表rrlS圓臺(tái)表r2rlRlR2
(3)柱體、錐體、臺(tái)體的體積公式V柱ShV圓柱ShV臺(tái)13(S""21rhV錐ShV圓錐1r2h
33SSS)hV圓臺(tái)13(S"SSS)h"13(rrRR)h
22(4)球體的表面積和體積公式:V球4、空間點(diǎn)、直線、平面的位置關(guān)系
=43R3;S
球面=4R2
第4頁(yè)
(1)平面
①平面的概念:A.描述性說(shuō)明;B.平面是無(wú)限伸展的;
②平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個(gè)銳角內(nèi));
也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來(lái)表示,如平面BC。
③點(diǎn)與平面的關(guān)系:點(diǎn)A在平面內(nèi),記作A;點(diǎn)A不在平面內(nèi),記作A點(diǎn)與直線的關(guān)系:點(diǎn)A的直線l上,記作:A∈l;點(diǎn)A在直線l外,記作Al;
直線與平面的關(guān)系:直線l在平面α內(nèi),記作lα;直線l不在平面α內(nèi),記作lα。(2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。
(即直線在平面內(nèi),或者平面經(jīng)過(guò)直線)
應(yīng)用:檢驗(yàn)桌面是否平;判斷直線是否在平面內(nèi)
用符號(hào)語(yǔ)言表示公理1:Al,Bl,A,Bl(3)公理2:經(jīng)過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。
推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。
公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線
符號(hào):平面α和β相交,交線是a,記作α∩β=a。
符號(hào)語(yǔ)言:PABABl,Pl公理3的作用:
①它是判定兩個(gè)平面相交的方法。
②它說(shuō)明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過(guò)公共點(diǎn)。③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。(5)公理4:平行于同一條直線的兩條直線互相平行(6)空間直線與直線之間的位置關(guān)系
①異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線②異面直線性質(zhì):既不平行,又不相交。
③異面直線判定:過(guò)平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過(guò)該店的直線是異面直線④異面直線所成角:直線a、b是異面直線,經(jīng)過(guò)空間任意一點(diǎn)O,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說(shuō)這兩條異面直線互相垂直。說(shuō)明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理(2)在異面直線所成角定義中,空間一點(diǎn)O是任取的,而和點(diǎn)O的位置無(wú)關(guān)。②求異面直線所成角步驟:
A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來(lái)求角
(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。(8)空間直線與平面之間的位置關(guān)系
直線在平面內(nèi)有無(wú)數(shù)個(gè)公共點(diǎn).
第5頁(yè)
三種位置關(guān)系的符號(hào)表示:aαa∩α=Aa∥α
(9)平面與平面之間的位置關(guān)系:平行沒有公共點(diǎn);α∥β
相交有一條公共直線。α∩β=b
5、空間中的平行問(wèn)題
(1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線線平行線面平行
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,
那么這條直線和交線平行。線面平行線線平行
(2)平面與平面平行的判定及其性質(zhì)兩個(gè)平面平行的判定定理
(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行
(線面平行→面面平行),
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行),
(3)垂直于同一條直線的兩個(gè)平面平行,兩個(gè)平面平行的性質(zhì)定理
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)7、空間中的垂直問(wèn)題
(1)線線、面面、線面垂直的定義①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說(shuō)這兩條異面直線互相垂直。②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說(shuō)這條直線和這個(gè)平面垂直。
③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說(shuō)這兩個(gè)平面垂直。(2)垂直關(guān)系的判定和性質(zhì)定理①線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
9、空間角問(wèn)題
(1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為0。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。③兩條異面直線所成的角:過(guò)空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線a,b,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
(2)直線和平面所成的角
①平面的平行線與平面所成的角:規(guī)定為0。②平面的垂線與平面所成的角:規(guī)定為90。③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
第6頁(yè)
在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,在解題時(shí),注意挖掘題設(shè)中兩個(gè)主要信息:(1)斜線上一點(diǎn)到面的垂線;(2)過(guò)斜線上的一點(diǎn)或過(guò)斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。(3)二面角和二面角的平面角①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射.....線,這兩條射線所成的角叫二面角的平面角。③直二面角:平面角是直角的二面角叫直二面角。
兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過(guò)來(lái),如果兩個(gè)平面垂直,那么所成的二面角為直二面角④求二面角的方法
定義法:在棱上選擇有關(guān)點(diǎn),過(guò)這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過(guò)兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角7、空間直角坐標(biāo)系
(1)定義:如圖,OBCDD,A,B,C,是單位正方體.以A為原點(diǎn),分別以O(shè)D,OA,,OB的方向?yàn)檎较�,建立三條數(shù)軸x軸.y軸.z軸。這時(shí)建立了一個(gè)空間直角坐標(biāo)系Oxyz.
1)O叫做坐標(biāo)原點(diǎn)2)x軸,y軸,z軸叫做坐標(biāo)軸.3)過(guò)每?jī)蓚€(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。
(2)右手表示法:令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)閤軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。
(3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)M的坐標(biāo)可以用有序?qū)崝?shù)組(x,y,z)來(lái)表示,有序?qū)崝?shù)組(x,y,z)叫做點(diǎn)M在此空間直角坐標(biāo)系中的坐標(biāo),記作M(x,y,z)(x叫做點(diǎn)M的橫坐標(biāo),y叫做點(diǎn)M的縱坐標(biāo),z叫做點(diǎn)M的豎坐標(biāo))
(4)空間兩點(diǎn)距離坐標(biāo)公式:d(x2x1)2(y2y1)2(z2z1)2
第7頁(yè)
友情提示:本文中關(guān)于《高中數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié)》給出的范例僅供您參考拓展思維使用,高中數(shù)學(xué)必修2知識(shí)點(diǎn)總結(jié):該篇文章建議您自主創(chuàng)作。
來(lái)源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問(wèn)題,請(qǐng)聯(lián)系我們及時(shí)刪除。