初三數(shù)學上冊知識點總結
初三數(shù)學知識點第一章二次根式
1二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數(shù);
a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x
2a因式分解法:左邊是兩個因式的乘積,右邊為零。3一元二次方程在實際問題中的應用
4韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2第三章旋轉1圖形的旋轉
旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;
對應點與旋轉中心所連的線段的夾角等于旋轉角旋轉前后的圖形全等。
2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖
形重合,則兩個圖形關于這個點中心對稱;
中心對稱圖形:一個圖形繞某一點旋轉180度后得到的
圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;
3關于原點對稱的點的坐標第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所
baca對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5點和圓的位置關系點在
dr點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,
圓心是三角形的三條角平分線的交點,為三角形的內心。
7圓和圓的位置關系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復試驗中,事件A發(fā)生的頻率某個常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗中,有n中可能的結果,并且它們發(fā)生的概率相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率就是p(A)=
mnm穩(wěn)定在n3用頻率去估計概率
擴展閱讀:初三數(shù)學上下冊知識點總結與重點難點總結
初三數(shù)學知識整理與重點難點總結
第21章二次根式知識框圖
理解并掌握下列結論:
(1)是非負數(shù);(2);(3);
I.二次根式的定義和概念:
1、定義:一般地,形如√。╝≥0)的代數(shù)式叫做二次根式。當a>0時,√a表示a的算數(shù)平方根,√0=0
2、概念:式子√。╝≥0)叫二次根式!台。╝≥0)是一個非負數(shù)。
II.二次根式√ā的簡單性質和幾何意義
1)a≥0;√ā≥0[雙重非負性]
2)(√。2=a(a≥0)[任何一個非負數(shù)都可以寫成一個數(shù)的平方的形式]3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論。
IV.二次根式的乘法和除法
1運算法則
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二數(shù)二次根之積,等于二數(shù)之積的二次根。2共軛因式
如果兩個含有根式的代數(shù)式的積不再含有根式,那么這兩個代數(shù)式叫做共軛因式,也稱互為有理化根式。
V.二次根式的加法和減法
1同類二次根式
一般地,把幾個二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個二次根式叫做同類二次根式。2合并同類二次根式
把幾個同類二次根式合并為一個二次根式就叫做合并同類二次根式。
3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進行合并
Ⅵ.二次根式的混合運算
1確定運算順序2靈活運用運算定律3正確使用乘法公式4大多數(shù)分母有理化要及時
5在有些簡便運算中也許可以約分,不要盲目有理化
VII.分母有理化
分母有理化有兩種方法I.分母是單項式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多項式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識框圖
旋轉的定義
旋轉對稱中心
大于360°)。
把一個圖形繞著一個定點旋轉一個角度后,與初始圖形重合,這種
圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小于0°,
也就是說:
①中心對稱圖形:如果把一個圖形繞著某一點旋轉180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
②中心對稱:如果把一個圖形繞著某一點旋轉180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
中心對稱圖形
正(2N)邊形(N為大于1的正整數(shù)),線段,矩形,菱形,圓
只是中心對稱圖形
平行四邊形等.第24章圓知識框圖
圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
圓的平面幾何性質和定理
一有關圓的基本性質與定理
⑴圓的確定:不在同一直線上的三個點確定一個圓。
圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。
⑵有關圓周角和圓心角的性質和定理在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其余各組量都分別相等。一條弧所對的圓周角等于它所對的圓心角的一半。直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
⑶有關外接圓和內切圓的性質和定理
①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。③S三角=1/2*△三角形周長*內切圓半徑
④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)
⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點。
〖有關切線的性質和定理〗
圓的切線垂直于過切點的半徑;經過半徑的一端,并且垂直于這條半徑的直線,是這個圓的切線。
切線的判定方法:經過半徑外端并且垂直于這條半徑的直線是圓的切線。
切線的性質:(1)經過切點垂直于這條半徑的直線是圓的切線。(2)經過切點垂直于切線的直線必經過圓心。(3)圓的切線垂直于經過切點的半徑。
切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角!加嘘P圓的計算公式〗
1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側面積S=πrl
第25章概率初步知識框圖
第26章二次函數(shù)
知識框圖
定義與定義表達式
一般地,自變量x和因變量y之間存在如下關系:
一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。頂點式:y=a(x-h)^2+k
交點式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2.拋物線有一個頂點P,坐標為P(-b/2a,(4ac-b²)/4a)當-b/2a=0時,P在y軸上;當Δ=b²-4ac=0時,P在x軸上。3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號
事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對二次函數(shù)求導得到。5.常數(shù)項c決定拋物線與y軸交點。拋物線與y軸交于(0,c)6.拋物線與x軸交點個數(shù)
Δ=b²-4ac>0時,拋物線與x軸有2個交點。Δ=b²-4ac=0時,拋物線與x軸有1個交點。_______
Δ=b²-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b²-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
當a>0時,函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b²/4a;在{x|x-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b²/4a}相反不變
當b=0時,拋物線的對稱軸是y軸,這時,函數(shù)是偶函數(shù),解析式變形為y=ax²+c(a≠0)解析式:
第27章相似知識框圖
相似三角形的認識
對應角相等,對應邊成比例的兩個三角形叫做相似三角形。(similartriangles);橄嗨菩蔚娜切谓凶鱿嗨迫切
相似三角形的判定方法
根據相似圖形的特征來判斷。(對應邊成比例,對應角相等)
1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構成的三角形與原三角形相似;
(這是相似三角形判定的引理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線分線段成比例的證明)
2.如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;
直角三角形相似判定定理
1.斜邊與一條直角邊對應成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個的兩個等腰三角形相似。推論二:腰和底對應成比例的兩個等腰三角形相似。推論三:有一個銳角相等的兩個直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。
推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。
推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。
相似三角形的性質
1.相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比。
2.相似三角形周長的比等于相似比。3.相似三角形面積的比等于相似比的平方。
相似三角形的特例
能夠完全重合的兩個三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定義
能夠完全重合的兩個三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;(3)有公共邊的,公共邊一定是對應邊;(4)有公共角的,角一定是對應角;(5)有對頂角的,對頂角一定是對應角;三角形全等的判定公理及推論
1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。
2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或“角邊角”)。由3可推到
4、有兩角及一角的對邊對應相等的兩個三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。全等三角形的性質
1、全等三角形的對應角相等、對應邊相等。2、全等三角形的對應邊上的高對應相等。3、全等三角形的對應角平分線相等。4、全等三角形的對應中線相等。5、全等三角形面積相等。6、全等三角形周長相等。
7、三邊對應相等的兩個三角形全等。(SSS)
8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)11、斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)全等三角形的運用
1、性質中三角形全等是條件,結論是對應角、對應邊相等。而全等的判定卻剛好相反。2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。3,當圖中出現(xiàn)兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。
第28章銳角三角函數(shù)
知識框圖
第29章投影與視圖知識框圖
代數(shù)重點難點總結
方程(組)
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)3.根的判別式:b24ac
bc4.根與系數(shù)的關系(韋達定理):x1+x2=,x1x2=
aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化為一元二次方程的方程1.分式方程⑴定義
⑵基本思想:去分母
⑶基本解法:①去分母法②換元法(如,)⑷驗根及方法2.無理方程⑴定義
⑵基本思想:分母有理化
⑶基本解法:①乘方法(注意技巧。。趽Q元法(例,)⑷驗根及方法
3.簡單的二元二次方程組
由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解應用題一概述
列方程(組)解應用題是中學數(shù)學聯(lián)系實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關系是什么。
⑵設元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
⑶用含未知數(shù)的代數(shù)式表示相關的量。
⑷尋找相等關系(有的由題目給出,有的由該問題所涉及的等量關系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。⑸解方程及檢驗。⑹答案。
綜上所述,列方程解應用題實質是先把實際問題轉化為數(shù)學問題(設元、列方程),在由數(shù)學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應用題的關鍵。
函數(shù)及其圖象
★重難點★二次函數(shù)的圖象和性質。一、平面直角坐標系
1.各象限內點的坐標的特點2.坐標軸上點的坐標的特點
3.關于坐標軸、原點對稱的點的坐標的特點4.坐標平面內點與有序實數(shù)對的對應關系二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實際問題有意義。
3.畫函數(shù)圖象:⑴列表;⑵描點;⑶連線。三、二次函數(shù)(定義→圖象→性質)⑴定義:
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變?yōu)椋瑒t頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a0時,在對稱軸左側,右側;a
四邊形
★重難點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。分類表:
1.一般性質(角)⑴內角和:360°
⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。⑶外角和:360°2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑
⑷對角線的紐帶作用:3.對稱圖形
⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)4.有關定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中!捌揭埔谎、“平移對角線”、“作高”、“連結頂點和對腰中點并延長與底邊相交”轉化為三角形。6.作圖:任意等分線段。
第十章圓
★重難點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。一、圓的基本性質1.圓的定義
2.有關概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點定圓”定理4.垂徑定理及其推論
5.“等對等”定理及其推論
5.與圓有關的角:⑴圓心角定義(等對等定理)⑵圓周角定義(圓周角定理,與圓心角的關系)⑶弦切角定義(弦切角定理)二、直線和圓的位置關系
1.三種位置及判定與性質:相離、相切、相交2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴⑵
4.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)外離、外切、相交、內切、內含
2.相切(交)兩圓連心線的性質定理3.兩圓的公切線:⑴定義⑵性質四、與圓有關的比例線段1.相交弦定理2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內切圓及性質3.圓的外切四邊形、內接四邊形的性質4.正多邊形及計算中心角:
內角的一半:(解Rt△OAM可求出相關元素等)六、一組計算公式1.圓周長公式2.圓面積公式3.扇形面積公式4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算七、點的軌跡六條基本軌跡八、有關作圖
1.作三角形的外接圓、內切圓2.平分已知弧
3.作已知兩線段的比例中項4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角4.切點圓心莫忘連
5.兩圓相切公切線(連心線)6.兩圓相交公共弦
友情提示:本文中關于《初三數(shù)學上冊知識點總結》給出的范例僅供您參考拓展思維使用,初三數(shù)學上冊知識點總結:該篇文章建議您自主創(chuàng)作。
來源:網絡整理 免責聲明:本文僅限學習分享,如產生版權問題,請聯(lián)系我們及時刪除。