初二數(shù)學下冊知識點復習總結(jié)
初二數(shù)學下冊知識點復習總結(jié)平移與旋轉(zhuǎn)旋轉(zhuǎn)1.旋轉(zhuǎn)的定義:在平面內(nèi),將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動叫做旋轉(zhuǎn)。2.旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)后得到的圖形與原圖形之間有:對應點到旋轉(zhuǎn)中心的距離相等,旋轉(zhuǎn)角相等。中心對稱1.中心對稱的定義:如果一個圖形繞某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么這兩個圖形叫做中心對稱。2.中心對稱圖形的定義:如果一個圖形繞一點旋轉(zhuǎn)180度后能與自身重合,這個圖形叫做中心對稱圖形。3.中心對稱的性質(zhì):在中心對稱的兩個圖形中,連結(jié)對稱點的線段都經(jīng)過對稱中心,并且被對稱中心平分。軸對稱1.軸對稱的定義:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。2.軸對稱圖形的性質(zhì):①角的平分線上的點到這個角的兩邊的距離相等。②線段垂直平分線上的點到這條線段兩個端點的距離相等。③等腰三角形的“三線合一”。3.軸對稱的性質(zhì):對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。圖形變換圖形變換的定義:圖形的平移、旋轉(zhuǎn)、和軸對稱統(tǒng)稱為圖形變換。
函數(shù)及其相關(guān)概念
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(shù)。2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學式子叫做函數(shù)解析式或函數(shù)關(guān)系式。使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點
(1)解析法
兩個變量間的函數(shù)關(guān)系,有時可以用一個含有這兩個變量及數(shù)字運算符號的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對應值列成一個表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對應值
(2)描點:以表中每對對應值為坐標,在坐標平面內(nèi)描出相應的點
(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。
正比例函數(shù)和一次函數(shù)1、正比例函數(shù)和一次函數(shù)的概念
一般地,如果ykxb(k,b是常數(shù),k0),那么y叫做x的一次函數(shù)。
特別地,當一次函數(shù)ykxb中的b為0時,ykx(k為常數(shù),k0)。這時,y叫做x的正比例函數(shù)。2、一次函數(shù)的圖像
所有一次函數(shù)的圖像都是一條直線
3、一次函數(shù)、正比例函數(shù)圖像的主要特征:
一次函數(shù)ykxb的圖像是經(jīng)過點(0,b)的直線;正比例函數(shù)ykx的圖像是經(jīng)過原點(0,0)的直線。(如下圖)4.正比例函數(shù)的性質(zhì)
一般地,正比例函數(shù)ykx有下列性質(zhì):
(1)當k>0時,圖像經(jīng)過第一、三象限,y隨x的增大而增大;(2)當k0時,y隨x的增大而增大(2)當k
k的符號b的符號函數(shù)圖像y0xyb00xK0注:當b=0時,一次函數(shù)變?yōu)檎壤瘮?shù),正比例函數(shù)是一次函數(shù)的特例。
友情提示:本文中關(guān)于《初二數(shù)學下冊知識點復習總結(jié)》給出的范例僅供您參考拓展思維使用,初二數(shù)學下冊知識點復習總結(jié):該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。