王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 計劃總結(jié) > 工作總結(jié) > 復(fù)變函數(shù)柯西積分總結(jié)

復(fù)變函數(shù)柯西積分總結(jié)

網(wǎng)站:公文素材庫 | 時間:2019-05-29 07:36:45 | 移動端:復(fù)變函數(shù)柯西積分總結(jié)

復(fù)變函數(shù)柯西積分總結(jié)

第三章復(fù)變函數(shù)的積分

能力要求

會通過轉(zhuǎn)化成兩個實變函數(shù)第一型曲線積分的方法來計算復(fù)變函數(shù)的積分。

知道復(fù)變函數(shù)積分的四條性質(zhì),特別注意前三條線性性質(zhì)。

知道在什么時候可以用實變函數(shù)中的牛頓萊布尼茨公式計算復(fù)變函數(shù)

積分。

會用柯西積分公式和高階導(dǎo)數(shù)公式(n=1,2,……)計算積分。會用復(fù)合閉路原理和閉路變形原理簡化積分計算。會判定一個復(fù)變函數(shù)是不是某一區(qū)域D內(nèi)的調(diào)和函數(shù)。會用偏積分法和不定積分法求共軛調(diào)和函數(shù)。

重點知識點講解

一、復(fù)變函數(shù)積分的基本計算法

復(fù)變函數(shù)的積分是轉(zhuǎn)化成實變函數(shù)的第一型曲線積分來計算的,因此我們要先回顧第一型曲線積分的計算步驟。例題:沿計算積分的值第一步:化參數(shù)

積分路徑是一條拋物線,它在復(fù)平面上的方程是,則。

第二步:把原積分式中的x、y和dz都代掉。注意積分上下限的變化。

二、積分的性質(zhì)

最重要的是積分的線性性質(zhì)(書P74性質(zhì)前三條),第四條估值不等式能力要求稍高。

三、用性質(zhì)、定理計算積分、定理回顧

柯西-古薩基本定理

如果函數(shù)在單連通域B內(nèi)處處解析,那么函數(shù)沿B內(nèi)任何一條封閉曲線C域B內(nèi)處處解析,那么函數(shù)沿B內(nèi)任何一條封閉曲線C的積分為零。

關(guān)鍵詞:處處解析封閉曲線積分為零注意:該定理中的C可以不是簡單曲線。閉路變形原理

在區(qū)域內(nèi)的一個解析函數(shù)沿閉曲線的積分,不因曲線在區(qū)域內(nèi)作連續(xù)變形而改變它的值,只要在變形過程中曲線不經(jīng)過函數(shù)不解析的點。

關(guān)鍵詞:解析函數(shù)連續(xù)變形不經(jīng)過不解析點基本定理的推廣復(fù)合閉路定理

設(shè)C為多連通域D內(nèi)的一條簡單閉曲線,C1,C2,……,Cn是在C內(nèi)部的簡單閉曲線,它們互不包含也互不相交,并且以C,C1,C2,……,Cn為邊界的區(qū)域全含于D。如果在D內(nèi)解析,那么

i),其中C及Ck均取正方向;

ii)積分路徑為C及Ck所組成的符合閉路,C取逆時針,Ck取順時針。復(fù)合閉路定理告訴了我們被積函數(shù)在積分路徑所圍區(qū)域內(nèi)存在奇點的情況下積分的計算方法:圍繞每個奇點畫一個小圓作為積分路徑,把原積分拆成多個積分的和。雖然書上那一部分要求我們用73頁上的那個結(jié)果,但其實我們完全可以用后面的柯西積分公式和高階導(dǎo)數(shù)公式來解決,那是更具一般性的。

柯西積分公式

如果在區(qū)域D內(nèi)處處解析,C為D內(nèi)的任何一條正向簡單閉曲線,它的內(nèi)處解析,C為D內(nèi)的任何一條正向簡單閉曲線,它的內(nèi)部完全含于D,為C內(nèi)的任一點,那么|f(z0)1f(z)dz2iCzz0關(guān)鍵詞:處處解析正向簡單閉曲線

柯西積分公式的功效是把一個復(fù)變函數(shù)的積分和它在積分路徑所圍區(qū)域內(nèi)話的次序不可顛倒!

接下來重點講共軛調(diào)和函數(shù)的兩種求法。1、偏積分法

求解過程(以知v求u為例):①求出和

②由柯西-黎曼方程中的得到,這就是偏積分。當(dāng)然,也可以用,對y求偏積分。

③代入,確定。求積分過程中出現(xiàn)的常數(shù)c則要根據(jù)題給信息確定。2、不定積分法求解過程:

①根據(jù)復(fù)變函數(shù)在某一點處的導(dǎo)數(shù)公式(見P42)寫出的導(dǎo)數(shù)表達式。②把它還原成z的函數(shù),得到與。③將它們對z積分,即得到

當(dāng)已知實部時可用上一式,已知虛部時可用下一式。

題目講解

1、,C為正向圓周|z|=2.解:

柯西積分公式2、求

高階導(dǎo)數(shù)公式3、求解:

高階導(dǎo)數(shù)公式

擴展閱讀:關(guān)于復(fù)變函數(shù)積分求解總結(jié)

關(guān)于求積分的各種方法的總結(jié)

摘要:函數(shù)的積分問題是復(fù)變函數(shù)輪的主要內(nèi)容,也是其基礎(chǔ)部分,因此有必要總結(jié)歸納求積分的各種方法.其主要方法有:利用柯西積分定理,柯西積分公式和用留數(shù)定理求積分等方法.現(xiàn)將這些方法逐一介紹.關(guān)鍵詞:積分,解析,函數(shù),曲線

1.利用定義求積分

例1、計算積分xyix2dz,積分路徑C是連接由0到1i的直線段.

c解:yx0x1為從點0到點1i的直線方程,于是

xyixdz2cxyixdxiy

201ixxixdxix

201*011iixdx1i3.

2.利用柯西積分定理求積分

柯西積分定理:設(shè)fz在單連通區(qū)域

D內(nèi)解析,C為D內(nèi)任一條周線,則

fzdzc0.

D柯西積分定理的等價形式:設(shè)C是一條周線,

DDC上解析,則fzdz0.

c為C之內(nèi)部,fz在閉域

例2、求coszzidz,其中C為圓周z3i1,

c解:圓周C為z3z1,被積函數(shù)的奇點為i,在C的外部,

于是,

coszzi在以C為邊界的閉圓z3i1上解析,

coszzidz0.

故由柯西積分定理的等價形式得c如果D為多連通區(qū)域,有如下定理:

設(shè)D是由復(fù)周線CC0C1C2Cn所構(gòu)成的有界多連通區(qū)域,fz在D內(nèi)解析,在DDC上連續(xù),則fzdz0.

c例3.計算積分dzz16z3z1.

1分析:被積函數(shù)Fzz3z1在C上共有兩個奇點z0和z,在z1內(nèi)

31作兩個充分小圓周,將兩個奇點挖掉,新區(qū)域的新邊界就構(gòu)成一個復(fù)周線,可應(yīng)用上定理.

解:顯然,

1z3z11z33z1

為心,充分小半徑r16任作以z0與以z12:zr313的圓周1:zr及

,將二奇點挖去,新邊界構(gòu)成復(fù)周線C12C:z1.

dzz3z1z1z3z12dz

12z3z1z3z1

1dzdzdzz13dz3z11dzz2z3dz3z12

dzdzz1dz1z31dz221z3

0.

3.利用柯西積分公式求積分

設(shè)區(qū)域D的邊界是周線或復(fù)周線C,函數(shù)fz在D內(nèi)解析,在DDC上連續(xù),則有fz12icfz2dzD,即fcd2ifz.

z例4.計算積分2zz1z1cdz的值,其中C:z2

解:因為fz2z2z1在z2上解析,

z1z2,由柯西積分公式得2zz1z22z12dz2i2zz1.

設(shè)區(qū)域D的邊界是周線或復(fù)周線C,函數(shù)fz在D內(nèi)解析,在DDC上連續(xù),則函數(shù)fz在區(qū)域D內(nèi)有各階導(dǎo)數(shù),并且有fnzdn12iczn!fzDn1,2即c例5.計算積分coszdzdn1zf2in!fnz.

czi3,其中C是繞i一周的周線.

解:因為cosz在z平面上解析,

所以e1coszczii.

dz32i2!cosz|ziicosi

e2例6.求積分c921d,其中C為圓周2.

解:

c921didc92

5

另外,若a為周線C內(nèi)部一點,則dzdz2icza

zacn0(n1,且n為整數(shù)).

4.應(yīng)用留數(shù)定理求復(fù)積分

fz在復(fù)周線或周線C所圍的區(qū)域D內(nèi),除a1,a2,an外解析,在閉域DDC上除a1,a2,an外連續(xù),則fzdz2iResfz.

ck1zakn設(shè)a為fz的n階極點,fzzzan,其中z在點a解析,a0,則

Resfzzaa.

n1!5z2z2n1例7.計算積分zz12dz

解:被積函數(shù)fz5z2zz12在圓周z2的內(nèi)部只有一階極點z0及z1,

Resfzz05z2z22|z02

25z2Resfz||2z12z1z1zz因此,由留數(shù)定理可得

5z2z2zz12dz2i220.

例8.計算積分解:fzz13coszz1z3dz.

cosz只以z0為三階極點,

12Resfzz02!coszz0

由留數(shù)定理得coszz1z31dz2ii.

25.用留數(shù)定理計算實積分

某些實的定積分可應(yīng)用留數(shù)定理進行計算,尤其是對原函數(shù)不易直接求得的定積分和反常積分,常是一個有效的辦法,其要點是將它劃歸為復(fù)變函數(shù)的周線積分.5.1計算Rcos,sind型積分

02令ze,則cos2izz21,sinzz2i1,ddziz,

此時有0zz1zz1,Rcos,sindRz122idziz.例9.2dacos0a1

12解:令zei,則cosI2izz,d1dziz,

zzz1dz,其中aa21,aa21,

1,1,1,

應(yīng)用留數(shù)定理得I2a12.

若Rcos,sin為的偶函數(shù),則Rcos,sind之值亦可用上述方法求之,

0因為此時Rcos,sind01Rcos,sind,仍然令ze.2i例10.計算taniad(a為實數(shù)且a0)

0分析:因為tania1eie2iai2iai11,

直接令e2iaiz,則dze2iai2id,

于是tania解:I11z1iz1.

iz12izcz11dz1dz2zz1cz1應(yīng)用留數(shù)定理,當(dāng)a0時,Ii當(dāng)a0時,Ii.5.2計算PxQxdx型積分

例11.計算xdx423xz24.

23424解:函數(shù)fz2323z在上半平面內(nèi)只有zi一個四階極點,

令ia,zat則fzz3444z4223z44

zaza

ta44443tt2a144a4at6at4att4322343223343t16a32a24at8att

211tt4423t168a32aResfzza1332a43

i5766即Resfzz23i133242i33

xdx423x242ii57662886.

友情提示:本文中關(guān)于《復(fù)變函數(shù)柯西積分總結(jié)》給出的范例僅供您參考拓展思維使用,復(fù)變函數(shù)柯西積分總結(jié):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


復(fù)變函數(shù)柯西積分總結(jié)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://www.taixiivf.com/gongwen/674647.html