六年級第一學期數(shù)學知識總結
六年級第一學期數(shù)學知識總結第一章
1.零和正整數(shù)統(tǒng)稱為自然數(shù)。2.正整數(shù)零負整數(shù)統(tǒng)稱為整數(shù)
3.整數(shù)a除以整數(shù)b,如果除得的商是整數(shù)而余數(shù)為零,我們就說a能被b整除b或者說b能整除a。
4.整數(shù)a能被整數(shù)b整除,a就叫做b的倍數(shù),b就叫做a因數(shù)(又稱為約數(shù))。5.個位上是0,2,4,6,8的整數(shù)都能被3整除。6.個位上是0,5的整數(shù)都能被5整除。
7.能被2整除的整數(shù)叫做偶數(shù),不能被2整除的整數(shù)叫做奇數(shù)。8.一個正整數(shù),如果只有1和它本身兩個因數(shù)
,這樣的數(shù)叫做素數(shù),也叫做質數(shù);如果除了1和它本身以外還有別的因數(shù),這樣的數(shù)也叫做合數(shù),
9.每個合數(shù)都可以寫成幾個素數(shù)相乘的形式,其中每個素數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的素因數(shù)。把一個合數(shù)用素因數(shù)相乘的形式表示出來,叫做分解素因數(shù)。
10.幾個數(shù)公有的因數(shù)叫做這幾個數(shù)的公因數(shù),其中最大的一個叫做這幾個數(shù)的最大公因數(shù)。
11.如果兩個整數(shù)只有公因數(shù)1,那么稱這兩個數(shù)互素。
12.兩個整數(shù)中,如果某個數(shù)是另一個數(shù)的因數(shù),那么這個數(shù)就是這兩個數(shù)的最大公因數(shù)。如果這兩個數(shù)互素,那么它們的最大公因數(shù)就是1。
13.如果兩個整數(shù)中某一個數(shù)是另一個數(shù)的倍數(shù),那么這個數(shù)就是它們的最小公因數(shù)。如果兩個數(shù)互素,那么它們的乘積就是它們的最小公因數(shù)。14.小結:數(shù)的整除
整數(shù)間的關系一個整數(shù)
能因倍互公公奇偶素合能整被素因倍數(shù)數(shù)數(shù)數(shù)被除數(shù)數(shù)52數(shù)數(shù)
整整
除除
的的最最分數(shù)數(shù)大小解的的公公素特特因倍因征征數(shù)數(shù)
數(shù)第二章
1.兩個正整數(shù)p,q相除,可以用分數(shù)p/q表示。即p÷q=p/q,其中p為分子,q為分母。
2.分數(shù)的基本性質:分數(shù)的分子和分母都乘以或除以同一個不為零的數(shù),所得的分數(shù)與原分數(shù)的大小相等。即a/b=ak/bk=a÷n/b÷n(b=0,k=0,n=0).3.分子和分母互素的分數(shù),叫做最簡分數(shù)。
4.把一個分數(shù)的分子與分母的公因數(shù)約去的過程,稱為約分。
5.將異分母的分數(shù)分別化成與原分數(shù)大小相等的同分母的分數(shù),這個過程叫做通分。6.異分母分數(shù)相加減,先通分,然后按照同分母分數(shù)加減法的法則進行計算。
7.分子比分母小的分數(shù)叫做真分數(shù),分子大于或者等于分母的分數(shù)叫做假分數(shù)。一個正整數(shù)與一個真分數(shù)相加所成的數(shù)叫做帶分數(shù)
8.一般地,由于分數(shù)p/q的意義是將一個總體等分為q份而取其中p份,于是我們把兩個分數(shù)相乘p/qm/n的意義規(guī)定為:在分數(shù)p/q的基礎上,以p/q為總體,”再”等分為n份而取其中m份,其結果是pm/qn,即p/qm/n=pm/qn(q=0,n=0).9.整數(shù)與分數(shù)相乘,整數(shù)與分數(shù)的分子的積作積的分子,分母不變。
10.1除以一個不為零的數(shù)得到的商,叫做這個數(shù)的倒數(shù)。a的倒數(shù)是1/a(a=0),p/q的倒數(shù)是q/p(p=0,q=0)。
11.互為倒數(shù)的兩個數(shù)的乘積是1
12.甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘以乙數(shù)的倒數(shù)。用字母表示就是:m/n÷p/q=m/nq/p(n=0,p=0q=0).13.一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其他素因數(shù),那么這個分數(shù)可以化成有限小數(shù);否則就不能化成有限小數(shù)。
14.一個小數(shù)從小數(shù)部分的某一位起,一個數(shù)字或者幾個數(shù)字依次不斷地重復出現(xiàn),這個小數(shù)叫做循環(huán)小數(shù)。一個循環(huán)小數(shù)的小數(shù)的小數(shù)部分中依次不斷地重復出現(xiàn)的第一個最少的數(shù)字組,叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。15.小結:分數(shù)分數(shù)與小數(shù)的關系分數(shù)的運算分數(shù)的基本性質有關概念分分異通約倒帶假真最分分數(shù)數(shù)循分分分數(shù)分分分簡數(shù)數(shù)的的環(huán)母與與數(shù)數(shù)數(shù)分除乘小分數(shù)小小法法數(shù)數(shù)數(shù)數(shù)的的的加混互減合化法運算分數(shù)與除法第三章
1。a,b是兩個同類的量,為了把b和a相比較,將a與b相除,叫做a與b的比.記作a:b,或寫成a/b,其中b=0;讀作a比b,或a比b的比.a叫做比的前項,b叫做比的后項.前項a除以后項b所得的商叫做比值.
2.求兩個同類量的比值時,如果單位不同,必須把這兩個量化成相同的單位.3.比的前項和后項同時乘以或除以相同的數(shù)(0除外),比值不變.4.三項連比的性質:
(1)如果a:b=m:n,b:c=n:k,那么a:b:c=m:n:k.(2)如果k=0,那么a:b:c=ak:bk:ck=a/k:b/k:c/k.
5.a,b,c,d四個量中,如果a:b=c:d,那么就說a,b,c,d成比例,也就是表示兩個比相等的式子叫做比例.其中a,b,c,d分別叫做第一二三四比例項,第一比例項a和第四比例項d叫做比例外項,第二比例b和第三比例項c叫做比例內(nèi)項.如果兩個比例內(nèi)項相同,即a:b=b:c,那么把b叫做a和c的比例中項。
6.如果a:b=c:d或a/b=c/d,那么ad=bc.反之,如果a,b,c,d都不為零,且ad=bc,那么a:b=c:d或a/b=c/d.
7.把兩個數(shù)量的比值寫成n/100的形式,稱為百分數(shù),也叫做百分比或百分率,記作n%
擴展閱讀:【人教版】小學數(shù)學六年級上冊知識點總結
【人教版】小學數(shù)學六年級上冊知識點總結
【編者按】小學六年級數(shù)學是小學階段學習數(shù)學的最后一年,它是同學們進入中學學好數(shù)學的關鍵。在上冊中,同學們會學習到新的本領,比如:用兩個數(shù)據(jù)來確定物理的位置,分數(shù)計算,用圓、百分數(shù)的知識來解決生活中的問題等。一、目標與要求
1.使學生能在方格紙上用數(shù)對確定位置。
2.使學生理解分數(shù)乘法的意義,掌握分數(shù)乘法的計算法則,并能熟練地進行計算。3.使學生理解倒數(shù)的意義,掌握求倒數(shù)的方法。
4.理解并掌握分數(shù)除法的計算方法,會進行分數(shù)除法計算。
5.理解比的意義,知道比與分數(shù)、除法的關系,并能類推出比的基本性質。能夠正確地化簡比和求比值。
6.使學生認識圓,掌握圓的特征;理解直徑與半徑的相互關系;理解圓周率的意義,掌握圓周率的近似值。
7.使學生理解和掌握求圓的周長與面積的計算公式,并能正確地計算圓的周長與面積。二、重、難點
1.能用數(shù)對表示物體的位置,正確區(qū)分列和行的順序;
2.使學生理解分數(shù)乘整數(shù)的意義,掌握分數(shù)乘整數(shù)的計算方法;3.掌握求倒數(shù)的方法;
4.圓的周長和圓周率的意義,圓周長公式的推導過程;5.百分數(shù)的意義,求一個數(shù)是另一個數(shù)的百分之幾的應用題;
6.理解圓周率“π”;圓面積計算公式的推導以及畫具有定半徑或直徑的圓;7.理解比的意義。三、知識點概念總結
1.分數(shù)乘法:分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。2.分數(shù)乘法的計算法則
分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。但分子分母不能為零.。3.分數(shù)乘法意義
分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)的和的簡便運算。一個數(shù)與分數(shù)相乘,可以看作是求這個數(shù)的幾分之幾是多少。4.分數(shù)乘整數(shù):數(shù)形結合、轉化化歸5.倒數(shù):乘積是1的兩個數(shù)叫做互為倒數(shù)。6.分數(shù)的倒數(shù)
找一個分數(shù)的倒數(shù),例如3/4把3/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/3。3/4是4/3的倒數(shù),也可以說4/3是3/4的倒數(shù)。7.整數(shù)的倒數(shù)
找一個整數(shù)的倒數(shù),例如12,把12化成分數(shù),即12/1,再把12/1這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是1/12,12是1/12的倒數(shù)。8.小數(shù)的倒數(shù)
普通算法:找一個小數(shù)的倒數(shù),例如0.25,把0.25化成分數(shù),即1/4,再把1/4這個分數(shù)的分子和分母交換位置,把原來的分子做分母,原來的分母做分子。則是4/19.用1計算法:也可以用1去除以這個數(shù),例如0.25,1/0.25等于4,所以0.25的倒數(shù)4,因為乘積是1的兩個數(shù)互為倒數(shù)。分數(shù)、整數(shù)也都使用這種規(guī)律。10.分數(shù)除法:分數(shù)除法是分數(shù)乘法的逆運算。11.分數(shù)除法計算法則:
甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
12.分數(shù)除法的意義:與整數(shù)除法的意義相同,都是已知兩個因數(shù)的積與其中一個因數(shù)求另一個因數(shù)。
13.分數(shù)除法應用題:先找單位1。單位1已知,求部分量或對應分率用乘法,求單位1用除法。14.比和比例:
比和比例一直是學數(shù)學容易弄混的幾大問題之一,其實它們之間的問題完全可以用一句話概括:比,等同于算式中等號左邊的式子,是式子的一種(如:a:b);比例,由至少兩個稱為比的式子由等號連接而成,且這兩個比的比值是相同(如:a:b=c:d)。所以,比和比例的聯(lián)系就可以說成是:比是比例的一部分;而比例是由至少兩個比值
相等的比組合而成的。表示兩個比相等的式子叫做比例,是比的意義。比例有4項,前項后項各2個.
15.比的基本性質:比的前項和后項都乘以或除以一個不為零的數(shù)。比值不變。比的性質用于化簡比。
比表示兩個數(shù)相除;只有兩個項:比的前項和后項。
比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。
16.比例的性質:在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積。比例的性質用于解比例。
17.比和比例的區(qū)別
(1)意義、項數(shù)、各部分名稱不同。比表示兩個數(shù)相除;只有兩個項:比的前項和后項。如:a:b這是比比例是一個等式,表示兩個比相等;有四個項:兩個外項和兩個內(nèi)項。a:b=3:4這是比例。
(2)比的基本性質和比例的基本性質意義不同、應用不同。比的性質:比的前項和后項都乘或除以一個不為零的數(shù)。比值不變。比例的性質:在比例里,兩個外項的乘積等于兩個內(nèi)項的乘積相等。比例的性質用于解比例。聯(lián)系:比例是由兩個相等的比組成。
18.比和比例的意義
比的意義是兩個數(shù)的除又叫做兩個數(shù)的比,而比例的意義是表示兩個比相等的式子是叫做比例。比是表示兩個數(shù)相除,有兩項;比例是一個等式,表示兩個比相等,有四項。因此,比和比例的意義也有所不同。而且,比號沒有括號的含義而另一種形式,分數(shù)有括號的含義!19.比和比例的聯(lián)系:
比和比例有著密切聯(lián)系。比是研究兩個量之間的關系,所以它有兩項;比例是研究相關聯(lián)的兩種量中兩組相對應數(shù)的關系,所以比例是由四項組成。比例是由比組成的,如果沒有兩種量的比,比例就不會存在。比例是比的發(fā)展,如果把比例式中右邊的比看成一個數(shù),比和比例此時又可以統(tǒng)一起來。如果兩個比相等,那么這兩個比就可以組成比例。成比例的兩個比的比值一定相等。
20.圓:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
21.圓心:圓任意兩條對稱軸的交點為圓心。注:圓心一般符號O表示
22.直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
23.半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
24.圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。25.圓周率:圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
26.圓的面積公式:圓所占平面的大小叫做圓的面積。πr^2;,用字母S表示。一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。27.周長計算公式(1)已知直徑:C=πd(2)已知半徑:C=2πr(3)已知周長:D=c/π
(4)圓周長的一半:1/2周長(曲線)
(5)半圓的周長:1/2周長+直徑(π÷2+1)28.面積計算公式:(1)已知半徑:S=πr2(2)已知直徑:S=π(d/2)(3)已知周長:S=π[c÷(2π)]29.百分數(shù)與分數(shù)的區(qū)別
(1)意義不同。百分數(shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)!彼荒鼙硎緝蓴(shù)之間的倍數(shù)關系,不能表示某一具體數(shù)量。因此,百分數(shù)后面不能帶單位名稱。分數(shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分數(shù)還可以表示兩數(shù)之間的倍數(shù)關系.
(2)應用范圍不同。百分數(shù)在生產(chǎn)、工作和生活中,常用于調查、統(tǒng)計、分析與比較。而分數(shù)常常是在測量、計算中,得不到整數(shù)結果時使用。
(3)書寫形式不同。百分數(shù)通常不寫成分數(shù)形式,而采用百分號“%”來表示。因此,不論百分數(shù)的分子、分母之間有多少個公約數(shù),都不約分;百分數(shù)的分子可以是自然數(shù),也可以是小數(shù)。
而分數(shù)的分子只能是自然數(shù),它的表示形式有:真分數(shù)、假分數(shù)、帶分數(shù),計算結果不是最簡分數(shù)的一般要通過約分化成最簡分數(shù),是假分數(shù)的要化成帶分數(shù)。任何一個百分數(shù)都可以寫成分母是100的分數(shù),而分母是100的分數(shù)并不都具有百分數(shù)的意義.(4)百分數(shù)不能帶單位名稱;當分數(shù)表示具體數(shù)時可帶單位名稱。30.百分數(shù)應用
百分數(shù)一般有三種情況:①100%以上,如:增長率、增產(chǎn)率等。②100%以下,如:
2發(fā)芽率、成長率等。③剛好100%,如:正確率,合格率等。31.百分數(shù)的意義
百分數(shù)只可以表示分率,而不能表示具體量,所以不能帶單位。百分數(shù)概念的形成應以學生實際生活中的事例或工農(nóng)業(yè)生產(chǎn)中的事例引入。32.日常應用
每天在電視里的天氣預報節(jié)目中,都會報出當天晚上和明天白天的天氣狀況、降水概率等,提示大家提前做好準備,就像今天的夜晚的降水概率是20%,明天白天有五~六級大風,降水概率是10%,早晚應增加衣服。20%、10%讓人一目了然,既清楚又簡練。知識點擴展1.圓的定義
幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。
2.圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧,半圓既不是優(yōu)弧,也不是劣弧。連接圓上任意兩點的線段叫做弦。圓中最長的弦為直徑。
3.圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
4.內(nèi)心和外心:和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。
6.圓的種類:(1)整體圓形,(2)弧形圓,(3)扁圓,(4)橢形圓,(5)纏絲圓,(6)螺旋圓,(7)圓中圓、圓外圓,(8)重圓,(9)橫圓,(10)豎圓,(11)斜圓。7.圓和其他圖形的位置關系:圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),0≤PO
8.百分數(shù)的由來
200多年前,瑞士數(shù)學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數(shù)來表示它。如果我們把它分成三等份,每份是7/3米,就是一種新的數(shù),我們把它叫做分數(shù)。而后,人們在分數(shù)的基礎上又以100做基數(shù),發(fā)明了百分數(shù)。
友情提示:本文中關于《六年級第一學期數(shù)學知識總結》給出的范例僅供您參考拓展思維使用,六年級第一學期數(shù)學知識總結:該篇文章建議您自主創(chuàng)作。
來源:網(wǎng)絡整理 免責聲明:本文僅限學習分享,如產(chǎn)生版權問題,請聯(lián)系我們及時刪除。