王牌对王牌第一季综艺,黄视频在线观看网站,世界一级毛片,成人黄色免费看

薈聚奇文、博采眾長、見賢思齊
當(dāng)前位置:公文素材庫 > 公文素材 > 范文素材 > 高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)

高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)

網(wǎng)站:公文素材庫 | 時間:2019-05-29 21:46:36 | 移動端:高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)

高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)

數(shù)列通項公式的四大題型

類型一:觀察分析法(已知前幾項,寫通項公式)

具體方法有:

(1)聯(lián)想比較法。如由-1,2,-3,4,-5,聯(lián)想到數(shù)列-1,1,-1,1,和1,2,3,4,5,,

可得an(1)nn;

由3,6,11,18,27,聯(lián)想到數(shù)列1,4,9,16,25,,可得ann22;由,,,13572n1,可知該數(shù)列中各項分式的分子為2n-1,而分母比分子多4,故an.

579112n3(2)逐差法。如1,3,5,7,9,,可發(fā)現(xiàn):3-1=5-3=7-5=9-7=2,于是歸納得an2n1.(3)逐商法.如1,3,9,27,81,可發(fā)現(xiàn)

3927813,于是歸納可得an3n1.13927(4)待定系數(shù)法.如:3,6,11,18,27,38,,一次逐差得數(shù)列3,5,7,9,11,,二次逐差得數(shù)列2,2,2,2,,一般地,逐差k次后可得常數(shù)列,則通項公式可設(shè)為k次多項式.可以猜想通項公式為anan2bnc.令n=1,2,3,得

a+b+c=3○14a+2b+c=6○29a+3b+c=11○3聯(lián)立○1○2○3可得a=1,b=0,c=2.經(jīng)檢驗適合,故ann22.

類型二:定義法

直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.

2例1.等差數(shù)列an是遞增數(shù)列,前n項和為Sn,且a1,a3,a9成等比數(shù)列,S5a5.求數(shù)列an的通項公

式.

解:設(shè)數(shù)列an公差為d(d0)

2∵a1,a3,a9成等比數(shù)列,∴a3a1a9,即(a12d)2a1(a18d)d2a1d

∵d0,∴a1d………………………………①

2∵S5a5∴5a154d(a14d)2…………②2由①②得:a133333

,d∴an(n1)n55555點評:利用定義法求數(shù)列通項時要注意不用錯定義,設(shè)法求出首項與公差(公比)后再寫出通項。

類型三:前n項和法(已知前n項和,求通項公式)若已知數(shù)列的前n項和Sn與an的關(guān)系,求數(shù)列an的通項an可用公式anS1n1求解。

SnSn1n2例2.已知數(shù)列an的前n項和Sn滿足Sn2an(1)n,n1.求數(shù)列an的通項公式。解:由a1S12a11a11

naSS2(aa)2(1),n2nnn1nn1當(dāng)時,有

an2an12(1)n1,

an12an22(1)n2,……,a22a12.

an2n1a12n1(1)2n2(1)22(1)n1

2n1(1)n[(2)n1(2)n2(2)]2n12[1(2)n1](1)3n2[2n2(1)n1].3

經(jīng)驗證a11也滿足上式,所以an2n2[2(1)n1]3點評:利用公式anSnn1求解時,要注意對n分類討論,但若能合寫時一定要合并.

SSn2n1n類型四:由遞推式求數(shù)列通項法

對于遞推公式確定的數(shù)列的求解,通?梢酝ㄟ^遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。

題型1:遞推公式為an1anf(n)

解法:把原遞推公式轉(zhuǎn)化為an1anf(n),利用累加法(逐差相加法)求解。例3.已知數(shù)列an滿足a1解:由條件知:an1an11,an1an2,求an。2nn11112nnn(n1)nn1分別令n1,2,3,,(n1),代入上式得(n1)個等式累加之,即

(a2a1)(a3a2)(a4a3)(anan1)

1111111(1)()()()

22334n1n所以ana11113111a1,an1(n2)n22n2na131311=滿足上式故an2212n題型2:遞推公式為an1f(n)an解法:把原遞推公式轉(zhuǎn)化為

an1f(n),利用累乘法(逐商相乘法)求解。an2nan,求an。,an13n1例4.已知數(shù)列an滿足a1解:由條件知

an1n,分別令n1,2,3,,(n1),代入上式得(n1)個等式累乘之,即ann1aaa2a3a4123n11nn

na1a2a3an1234a1n又a122,an(n2)33na122滿足上式故an33n注:由an1f(n)an和a1確定的遞推數(shù)列an的通項還可以如下求得:

所以anf(n1)an1,an1f(n2)an2,,a2f(1)a1依次向前代入,得

anf(n1)f(n2)f(1)a1,

題型三、形如

an1panqanp的遞推式

解法:取倒法構(gòu)造輔助數(shù)列例5:

數(shù)列an滿足:a11,an1求an通項公式解:an

an,2an1

an112a11n122an11anan1an111是以為首項,以2為公差的等差數(shù)列a1an

題型4、遞推式:an1panfn

解法:只需構(gòu)造數(shù)列bn,消去fn帶來的差異.其中fn有多種不同形式

①fn為常數(shù),即遞推公式為an1panq(其中p,q均為常數(shù),(pq(p1)0))。解法:轉(zhuǎn)化為:an1tp(ant),其中tq,再利用換元法轉(zhuǎn)化為等比數(shù)列求解。1p例6.已知數(shù)列an中,a11,an12an3,求an.

解:設(shè)遞推公式an12an3可以轉(zhuǎn)化為an1t2(ant)即an12antt3.故遞推公式為

an132(an3),令bnan3,則b1a134,且

bn1an132.所以bn是以b14為首項,2為bnan3公比的等比數(shù)列,則bn42n12n1,所以an2n13.②fn為一次多項式,即遞推公式為an1panrns

解法:轉(zhuǎn)化為:an1[A(n1)B]p[an(AnB)],其中A,再利用換元法轉(zhuǎn)化為等比數(shù)列求解。例7.設(shè)數(shù)列an:a14,an3an12n1,(n2),求an.

解:設(shè)bnanAnB,則anbnAnB,將an,an1代入遞推式,得

bnAnB3bn1A(n1)B2n13bn1(3A2)n(3B3A1)

A3A2B3B3A1A1B1取bnann1…(1)則bn3bn1,又b16,故bn63n123n代入(1)得

an23nn1

備注:本題也可由an3an12n1,an13an22(n1)1(n3)兩式相減得

anan13(an1an2)2轉(zhuǎn)化為bnpbn1q求之.

③f(n)為n的二次式,則可設(shè)bnanAn2BnC;

題型5:遞推公式為an1panqn(其中p,q均為常數(shù),(pq(p1)(q1)0))。(或

an1panrqn,其中p,q,r均為常數(shù))

解法:該類型較題型3要復(fù)雜一些。一般地,要先在原遞推公式兩邊同除以qn1,得:引入輔助數(shù)列bn(其中bn例8.已知數(shù)列an中,a1解:在an1an1pan1qn1qqnqanp1bb),得:再應(yīng)用類型3的方法解決。n1nnqqq511n1,an1an(),求an。632112an()n1兩邊乘以2n1得:2n1an1(2nan)132322bn1,應(yīng)用例7解法得:bn32()n33令bn2nan,則bn所以anbn1n1n3()2()n232題型5:遞推公式為an2pan1qan(其中p,q均為常數(shù))。解法:先把原遞推公式轉(zhuǎn)化為an2san1t(an1san)其中s,t滿足法求解。

例9.已知數(shù)列an中,a11,a22,an2解:由an2stp,再應(yīng)用前面類型3的方

stq21an1an,求an。3321an1an可轉(zhuǎn)化為an2san1t(an1san)33即an221sts1s3(st)an1stan31或tst13t131s1s這里不妨選用3,大家可以試一試),則1(當(dāng)然也可選用t3t111an2an1(an1an)an1an是以首項為a2a11,公比為的等比數(shù)列,所以

331an1an()n1,應(yīng)用類型1的方法,分別令n1,2,3,,(n1),代入上式得(n1)個等式累加之,即

311()n11113ana1()0()1()n2

133313又a11,所以an731n1()。4

擴展閱讀:高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)

數(shù)列通項公式的求法

編輯:張杰201*.12.15

一、定義法

直接利用等差數(shù)列或等比數(shù)列的定義求通項的方法叫定義法,這種方法適應(yīng)于已知數(shù)列類型的題目.

2例1.等差數(shù)列an是遞增數(shù)列,前n項和為Sn,且a1,a3,a9成等比數(shù)列,S5a5.求數(shù)列an的通項公

式.

解:設(shè)數(shù)列an公差為d(d0)

2∵a1,a3,a9成等比數(shù)列,∴a3a1a9,即(a12d)2a1(a18d)d2a1d

∵d0,∴a1d………………………………①

2∵S5a5∴5a154d(a14d)2…………②2由①②得:a133333,d∴an(n1)n】55555點評:利用定義法求數(shù)列通項時要注意不用錯定義,設(shè)法求出首項與公差(公比)后再寫出通項。

二、公式法

若已知數(shù)列的前n項和Sn與an的關(guān)系,求數(shù)列an的通項an可用公式anS1n1求解。

SSn2n1n例2.已知數(shù)列an的前n項和Sn滿足Sn2an(1)n,n1.求數(shù)列an的通項公式。解:由a1S12a11a11

naSS2(aa)2(1),n2nnn1nn1當(dāng)時,有

an2an12(1)n1,

an12an22(1)n2,……,a22a12.

an2n1a12n1(1)2n2(1)22(1)n12n1(1)n[(2)n1(2)n2(2)]2n12[1(2)n1](1)3n2[2n2(1)n1].3

經(jīng)驗證a11也滿足上式,所以an2n2[2(1)n1]點評:利用公式an三、由遞推式求數(shù)列通項法

Snn1求解時,要注意對n分類討論,但若能合寫時一定要合并.

SnSn1n2對于遞推公式確定的數(shù)列的求解,通常可以通過遞推公式的變換,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列問題,有時也用到一些特殊的轉(zhuǎn)化方法與特殊數(shù)列。

類型1遞推公式為an1anf(n)

解法:把原遞推公式轉(zhuǎn)化為an1anf(n),利用累加法(逐差相加法)求解。例3.已知數(shù)列an滿足a1解:由條件知:an1an11,an1an2,求an。2nn1111

n2nn(n1)nn1分別令n1,2,3,,(n1),代入上式得(n1)個等式累加之,即

(a2a1)(a3a2)(a4a3)(anan1)

1111111(1)()()()

22334n1n所以ana11類型2

(1)遞推公式為an1f(n)an解法:把原遞推公式轉(zhuǎn)化為

111131a1,an1n22n2nan1f(n),利用累乘法(逐商相乘法)求解。an2nan,求an。,an13n1例4.已知數(shù)列an滿足a1解:由條件知

an1n,分別令n1,2,3,,(n1),代入上式得(n1)個等式累乘之,即ann1aaa2a3a4123n11nn

na1a2a3an1234a1n又a122,an33n注:由an1f(n)an和a1確定的遞推數(shù)列an的通項還可以如下求得:

所以anf(n1)an1,an1f(n2)an2,,a2f(1)a1依次向前代入,得

anf(n1)f(n2)f(1)a1,類型3

遞推式:an1panfn

解法:只需構(gòu)造數(shù)列bn,消去fn帶來的差異.其中fn有多種不同形式

①fn為常數(shù),即遞推公式為an1panq(其中p,q均為常數(shù),(pq(p1)0))。解法:轉(zhuǎn)化為:an1tp(ant),其中tq,再利用換元法轉(zhuǎn)化為等比數(shù)列求解。1p例5.已知數(shù)列an中,a11,an12an3,求an.

解:設(shè)遞推公式an12an3可以轉(zhuǎn)化為an1t2(ant)即an12antt3.故遞推公式為

an132(an3),令bnan3,則b1a134,且

bn1an132.所以bn是以b14為首項,2為bnan3公比的等比數(shù)列,則bn42n12n1,所以an2n13.②fn為一次多項式,即遞推公式為an1panrns例6.設(shè)數(shù)列an:a14,an3an12n1,(n2),求an.

解:設(shè)bnanAnB,則anbnAnB,將an,an1代入遞推式,得

bnAnB3bn1A(n1)B2n13bn1(3A2)n(3B3A1)

A3A2B3B3A1A1B1取bnann1…(1)則bn3bn1,又b16,故bn63n123n代入(1)得

an23nn1

備注:本題也可由an3an12n1,an13an22(n1)1(n3)兩式相減得

anan13(an1an2)2轉(zhuǎn)化為bnpbn1q求之.

③f(n)為n的二次式,則可設(shè)bnanAn2BnC;類型4

遞推公式為an1panqn(其中p,q均為常數(shù),(pq(p1)(q1)0))。(或an1panrqn,其中p,q,r均為常數(shù))

解法:該類型較類型3要復(fù)雜一些。一般地,要先在原遞推公式兩邊同除以qn1,得:引入輔助數(shù)列bn(其中bnan1pan1nn1qqqqanp1bb),得:再應(yīng)用類型3的方法解決。n1nqqqn例7.已知數(shù)列an中,a1解:在an1511,an1an()n1,求an。632112an()n1兩邊乘以2n1得:2n1an1(2nan)132322bn1,應(yīng)用例7解法得:bn32()n33令bn2nan,則bn1所以an類型5

bn1n1n3()2()n232遞推公式為an2pan1qan(其中p,q均為常數(shù))。

解法:先把原遞推公式轉(zhuǎn)化為an2san1t(an1san)其中s,t滿足法求解。

例8.已知數(shù)列an中,a11,a22,an2解:由an2stp,再應(yīng)用前面類型3的方

stq21an1an,求an。3321an1an可轉(zhuǎn)化為an2san1t(an1san)33即an221sts1s3(st)an1stan31或tst13t131s1s這里不妨選用3,大家可以試一試),則1(當(dāng)然也可選用t3t111an2an1(an1an)an1an是以首項為a2a11,公比為的等比數(shù)列,所以

331an1an()n1,應(yīng)用類型1的方法,分別令n1,2,3,,(n1),代入上式得(n1)個等式累加之,即

311()n11113ana1()0()1()n2

133313又a11,所以an731n1()。4

友情提示:本文中關(guān)于《高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)》給出的范例僅供您參考拓展思維使用,高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精):該篇文章建議您自主創(chuàng)作。

來源:網(wǎng)絡(luò)整理 免責(zé)聲明:本文僅限學(xué)習(xí)分享,如產(chǎn)生版權(quán)問題,請聯(lián)系我們及時刪除。


高二數(shù)學(xué)必修5數(shù)列通項公式的求法歸納(精)》由互聯(lián)網(wǎng)用戶整理提供,轉(zhuǎn)載分享請保留原作者信息,謝謝!
鏈接地址:http://www.taixiivf.com/gongwen/744007.html